
Computation

Visualization

Programming

For Use with MATLAB®

User’s Guide
Version 2.1

Database Toolbox

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

Database Toolbox User’s Guide
 COPYRIGHT 1998 - 2000 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1998 Version 1 release for MATLAB 5.2 (online only)
July 1998 First printing for Version 1 (Releases 10 and 11)
June 1999 Updated for Version 2 for Release 11 (online only)
December 1999 Second printing (Release 11, Version 2)
September 2000 Updated for Version 2.1 for Release 12 (online only)

ii

Preface

What Is the Database Toolbox? . ii
How Databases Connect to MATLAB . ii
New Features . ii

Version 2.1 . ii
Version 2 . iii

Features of the Database Toolbox . iv

Related Products . v

Using This Guide . vii
Expected Background . vii
Organization of the Document . vii
Online Help . viii
Typographical Conventions . ix

1
Installation and Setup

System Requirements . 1-2
Platforms . 1-2
MATLAB Version . 1-2
Databases . 1-2
Drivers . 1-3

About Drivers for the Database Toolbox 1-3
Structured Query Language (SQL) . 1-3
Data Types . 1-4

Installing the Database Toolbox . 1-5

iii

Setting Up a Data Source . 1-6
Setting Up a Local Data Source for ODBC Drivers 1-6
Setting Up a Remote Data Source for ODBC Drivers 1-8
Setting Up a Data Source for JDBC Drivers 1-12

Starting the Database Toolbox . 1-14

2
Visual Query Builder Tutorial

About the Visual Query Builder . 2-2
Visual Query Builder Interface . 2-2
When to Use the Visual Query Builder . 2-3
When to Use Database Toolbox Functions 2-4
Examples Using the Visual Query Builder 2-4

Example in the Visual Query Builder Demo 2-4
Online Help for the Visual Query Builder 2-5

Starting and Quitting the Visual Query Builder 2-6

Building, Running, and Saving a Query 2-7
Building and Running a Query . 2-7
NULL Values . 2-9
Using Retrieved Data in MATLAB . 2-10
Saving a Query . 2-10

Using a Saved Query . 2-11
Clearing Variables from the Data Area 2-11

Viewing Query Results . 2-12
Relational Display of Data . 2-13
Chart Display of Results . 2-16
Report Display of Results in a Table . 2-19
Display of Results in the Report Generator 2-20

iv

Fine-Tuning Queries Using Advanced Query Options 2-22
Retrieving Unique Occurrences . 2-22
Retrieving Information That Meets Specified Criteria 2-23
Presenting Results in Specified Order 2-32
Creating Subqueries for Values from Multiple Tables 2-35
Creating Queries for Results from Multiple Tables 2-41
Other Features in Advanced Query Options 2-45

3
Tutorial for Functions

Introduction . 3-2

About Objects and Methods for the Database Toolbox 3-4

Importing Data into MATLAB from a Database 3-6

Viewing Information About the Imported Data 3-11

Exporting Data from MATLAB to a New Record in a Database 3-14

Exporting Data from MATLAB, Replacing Existing Data in a Database 3-20

Exporting Multiple Records from MATLAB 3-22

Accessing Metadata . 3-26
Resultset Metadata Object . 3-32

Performing Driver Functions . 3-33

v

Working with Cell Arrays in MATLAB 3-36
Viewing Query Results . 3-36

Importing Data Using the fetch Function 3-36
Importing Data Using the Visual Query Builder 3-37
Viewing Results Shown as a Matrix 3-38

Retrieving Elements of Query Results 3-38
Retrieving a Single Element . 3-38
Retrieving an Entire Column or Row 3-39

Performing Functions on Cell Arrays . 3-39
Getting the Size of an Array . 3-40

Creating Cell Arrays for Exporting Data from MATLAB 3-40
Enclosing Data in Curly Braces . 3-40
Assigning Cell Array Elements . 3-40
Converting a Numeric Array to a Cell Array 3-41

4
Function Reference

Functions by Category . 4-2
General . 4-2
Database Connection . 4-3
SQL Cursor . 4-3
Importing Data into MATLAB from a Database 4-4
Exporting Data from MATLAB to a Database 4-4
Database Metadata Object . 4-5
Driver Object . 4-6
Drivermanager Object . 4-6
Resultset Object . 4-7
Resultset Metadata Object . 4-7
Visual Query Builder . 4-7

vi

Alphabetical List of Functions . 4-8
attr . 4-9
bestrowid . 4-11
clearwarnings . 4-12
close . 4-13
cols . 4-15
columnnames . 4-16
columnprivileges . 4-17
columns . 4-19
commit . 4-21
confds . 4-22
crossreference . 4-23
database . 4-26
dmd . 4-28
driver . 4-29
drivermanager . 4-30
exec . 4-31
exportedkeys . 4-33
fetch . 4-36
get . 4-39
importedkeys . 4-46
indexinfo . 4-49
insert . 4-51
isconnection . 4-54
isdriver . 4-55
isjdbc . 4-56
isnullcolumn . 4-57
isreadonly . 4-59
isurl . 4-60
logintimeout . 4-61
namecolumn . 4-64
ping . 4-65
primarykeys . 4-67
procedurecolumns . 4-69
procedures . 4-71
querybuilder . 4-73
querytimeout . 4-74
register . 4-75
resultset . 4-76

vii Contents

rollback . 4-77
rows . 4-78
rsmd . 4-79
set . 4-80
setdbprefs . 4-86
sql2native . 4-88
supports . 4-89
tableprivileges . 4-91
tables . 4-92
unregister . 4-93
update . 4-94
versioncolumns . 4-96
width . 4-98

Preface

What Is the Database Toolbox? ii
How Databases Connect to MATLAB ii
New Features . ii
Features of the Database Toolbox iv

Related Products v

Using This Guidevii
Expected Backgroundvii
Organization of the Documentvii
Online Help . viii
Typographical Conventions ix

 Preface

ii

What Is the Database Toolbox?
The Database Toolbox is one of an extensive collection of toolboxes for use with
MATLAB. The Database Toolbox enables you to move data (both importing
and exporting) between MATLAB and popular relational databases.

With the Database Toolbox, you can bring data from an existing database into
MATLAB, use any of MATLAB’s computational and analytic tools, and store
the results back in the database or in another database. You read from the
database, importing the data into the MATLAB workspace.

For example, a financial analyst working on a mutual fund could import a
company’s financial data into MATLAB, run selected analyses, and store the
results for future tracking. The analyst could then export the saved results to
a database.

How Databases Connect to MATLAB
The Database Toolbox connects MATLAB to a database using MATLAB
functions. Data is retrieved from the database as a string, parsed into the
correct data types, and stored in a MATLAB cell array. At that point, you use
MATLAB’s extensive set of tools to work with the data. You can include
Database Toolbox functions in MATLAB M-files. To export the data from
MATLAB to a database, you use MATLAB functions.

The Database Toolbox also comes with the Visual Query Builder (VQB), an
easy-to-use graphical user interface for retrieving data from your database.
With the VQB, you build queries to retrieve data by selecting information from
lists rather than by entering MATLAB functions. The VQB retrieves the data
into a MATLAB cell array so you then can process the data using MATLAB’s
suite of functions. With the VQB, you can display the retrieved information in
relational tables, reports, and charts.

New Features

Version 2.1

• The Database Toolbox now runs on all platforms that support MATLAB 6,
with the exception of the HP 10.2 (HP 700).

What Is the Database Toolbox?

iii

• Performance for fetching data from your database has increased by a factor
of roughly 100 over Version 2.0. This improvement was first introduced in
Version 2.0.1.

• Do not run feature('dispatchjava',1) to start the Database Toolbox, as
was required for Version 2.0. Instead, begin by running the Database
Toolbox function you want to use.

• When using the Visual Query Builder, you can now export query results
using the Report Generator, if the Report Generator product is installed
locally. To use it, select Report Generator from the Visual Query Builder
Display menu.

• A Group button has been added to the Where, Subquery, and Having
dialog boxes. Use the Group button to group constraints for a single field,
especially when using the OR operator. Basically, the Group button allows
you to evaluate a set of constraints as a whole.

Version 2
Version 2 of the Database Toolbox includes these new features:

• The Visual Query Builder, an easy-to-use graphical user interface for
retrieving data from your database.

• Support for UNIX – You can now run the Database Toolbox on UNIX
platforms. Note that for MATLAB Release 12, the Database Toolbox does not
run on the HP 10.2 platform.

• Over 30 new functions – These include an invaluable set of functions for
retrieving database metadata so you can find out information about the
database, for example, table names and column names. Other new functions
are for drivers and resultsets.

• To use the new version of the database toolbox, you need to run the command
feature('dispatchjava',1). (Note that this is not required for the
Database Toolbox on MATLAB Release 12.)

 Preface

iv

Features of the Database Toolbox
The Database Toolbox has the following features:

• Data types are automatically preserved in MATLAB – No data massaging or
manipulation is required. The data is stored in MATLAB cell arrays, which
support mixed data types.

• Different databases can be used in a single session – Import data from one
database, perform calculations, and export the modified or unmodified data
to another database. Multiple databases can be open during a session.

• Dynamic importing of data from within MATLAB – Modify your SQL queries
in MATLAB statements to retrieve the data you need.

• Single environment for faster data analysis – Access both database data and
MATLAB functions at the MATLAB command prompt.

• Database connections remain open until explicitly closed – Once the
connection to a database has been established, it remains open during the
entire MATLAB session until you explicitly close it. This improves database
access and reduces the number of functions necessary to import/export data.

• Multiple cursors supported for a single database connection – Once a
connection has been established with a database, the connection can support
the use of multiple cursors. You can execute several queries on the same
connection.

• Retrieval of large data sets or partial data sets – You can retrieve large data
sets from a database in a single fetch or in discrete amounts using multiple
fetches.

• Retrieval of database metadata – You do not need to know the table names,
field names, and properties of the database structure to access the database,
but can retrieve that information using Database Toolbox functions.

• Visual Query Builder – If you are unfamiliar with SQL, you can retrieve
information from databases via this easy-to-use graphical interface.

Related Products

v

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Database Toolbox.

For more information about any of these products, see either:

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “Products”
section

Note The following toolboxes all include functions that extend MATLAB’s
capabilities.

Product Description

Data Acquisition Toolbox MATLAB functions for direct access to live,
measured data from MATLAB

Datafeed Toolbox MATLAB functions for integrating the
numerical, computational, and graphical
capabilities of MATLAB with financial data
providers

Financial Time Series
Toolbox

Tool for analyzing time series data in the
financial markets

Financial Toolbox MATLAB functions for quantitative financial
modeling and analytic prototyping

 Preface

vi

GARCH Toolbox MATLAB functions for univariate Generalized
Autoregressive Conditional Heteroskedasticity
(GARCH) volatility modeling

MATLAB Runtime
Server

MATLAB environment in which you can take
an existing MATLAB application and turn it
into a stand-alone product that is easy and
cost-effective to package and distribute. Users
access only the features that you provide via
your application’s graphical user interface
(GUI) - they do not have access to your code or
the MATLAB command line.

Product Description (Continued)

Using This Guide

vii

Using This Guide
This user’s guide describes how to install and use the Database Toolbox.

Expected Background
This user’s guide assumes that you have a working understanding of MATLAB.

If you are not familiar with the Structured Query Language (SQL) and
database applications, use the Visual Query Builder. For information on using
the Visual Query Builder, see Chapter 2, “Visual Query Builder Tutorial.”

If you are familiar with SQL and the database applications you use, you can
use the Visual Query Builder to build SQL queries easily and import results
into MATLAB. If you want to export results from MATLAB to databases, write
MATLAB-based applications that access databases, or perform functions not
available with the Visual Query Builder, use the Database Toolbox functions.
For information on how to use the functions, see Chapter 3, “Tutorial for
Functions”, and Chapter 4, “Function Reference.”

Organization of the Document
The remainder of the book provides instructions for setting up and using the
Database Toolbox.

Section Description

Chapter 1,
“Installation
and Setup”

Provides system requirements and describes how to
install the Database Toolbox and set up an ODBC data
source or a JDBC driver.

Chapter 2,
“Visual Query
Builder
Tutorial”

Provides instructions for using the Visual Query
Builder, an easy-to-use graphical user interface for
querying your database. It uses a sample database,
dbtoolboxdemo, that is installed with the Database
Toolbox for use with the U.S. English version of
Microsoft Access 97. If you have this version of
Microsoft Access installed on your system, you can
perform the steps exactly as shown.

 Preface

viii

Online Help
Help for the Database Toolbox is available online via the Help browser. Use the
doc function for information about a specific function. In the Visual Query
Builder, use the Help menu, or use the Help buttons in dialog boxes for
detailed information about features in the dialog boxes.

Chapter 3,
“Tutorial for
Functions”

Presents examples with instructions for using many of
the Database Toolbox functions. The tutorial uses a
sample database, Northwind, that is distributed with
Microsoft Access. If you have Microsoft Access installed
on your system, you can perform the steps exactly as
shown. Another example uses a different database,
tutorial, a database that is installed with the Database
Toolbox for use with Access.

Chapter 4,
“Function
Reference”

A reference of all functions in the toolbox, with a
summary presented by category and the details
organized alphabetically.

Section Description (Continued)

Using This Guide

ix

Typographical Conventions
This book uses the following typographical conventions.

Item Convention to Use Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

MATLAB output Monospace font MATLAB responds with

A =

5

Function names and syntax Monospace font The close function uses the
syntax:

close(cursor)

Literal strings (in syntax) must
be typed as is

Monospace bold for
literals.

set(conn, 'AutoCommit',
'value')

String variables having a
prescribed set of values

Monospace italics set(conn, 'AutoCommit',
'value')

where 'value' can be on or off

Mathematical
expressions

Variables in italics

Functions, operators, and
constants in standard text.

This vector represents the
polynomial

p = x2 + 2x + 3

Menu names, menu items, and
controls

Boldface with an initial
capital letter

Choose the File menu.

Keys Boldface with an initial
capital letter

Press the Enter key.

New terms Italics An array is an ordered
collection of information.

 Preface

x

In addition, some words in our syntax lines are shown within single quotation
marks. The single quotation marks are a MATLAB requirement and must be
typed. For example

get(conn, 'AutoCommit')

1

Installation and Setup

System Requirements 1-2
Platforms . 1-2
MATLAB Version 1-2
Databases . 1-2
Drivers . 1-3
Structured Query Language (SQL) 1-3
Data Types . 1-4

Installing the Database Toolbox 1-5

Setting Up a Data Source 1-6
Setting Up a Local Data Source for ODBC Drivers 1-6
Setting Up a Remote Data Source for ODBC Drivers 1-8
Setting Up a Data Source for JDBC Drivers 1-12

Starting the Database Toolbox 1-14

1 Installation and Setup

1-2

System Requirements
The Database Toolbox 2.1 works with the following systems and applications:

• “Platforms” on page 1-2

• “MATLAB Version” on page 1-2

• “Databases” on page 1-2

• “Drivers” on page 1-3

• “Structured Query Language (SQL)” on page 1-3

• “Data Types” on page 1-4

Platforms
The Database Toolbox 2.1 runs on all of the platforms that support MATLAB
Release 12 and Java. The Database Toolbox 2.1 does not run on the
Hewlett-Packard 10.2 platform.

MATLAB Version
The Database Toolbox 2.1 requires MATLAB Version 6 (Release 12) or later.
You can see the system requirements for MATLAB online at
http://www.mathworks.com/products/sysreq/.

Databases
Your system must have access to an installed database. The Database Toolbox
supports import/export of data for the following database management
systems:

• IBM DB2 Universal Version 5

• Informix Version 7.2.2

• Ingres

• Microsoft Access 95 or 97

• Microsoft SQL Server Version 6.5 or 7.0

• Oracle Version 7.3.3

• Sybase SQL Server Version 11.0

• Sybase SQL Anywhere Version 5.0

System Requirements

1-3

If you are upgrading from an earlier version of a database, such as Microsoft
SQL Server Version 6.5, to a newer version, there is nothing special you need
to do for the Database Toolbox. Just be sure to configure the data sources for
the new version of the database application as you did for the original verison.

Drivers
For PC platforms, the Database Toolbox supports Open Database Connectivity
(ODBC) drivers used with the supported databases,. For UNIX and PC
platforms, the Database Toolbox supports Java Database Connectivity (JDBC)
drivers.

The driver for your database must be installed in order to use the Database
Toolbox. Most users (or their database administrators) install the driver when
they install the database. Consult your database documentation if you need
instructions to install a database driver.

About Drivers for the Database Toolbox
An ODBC driver is a standard PC interface that enables communication
between database management systems and SQL-based applications. A JDBC
driver is a standard interface that enables communication between Java-based
applications and database management systems.

The Database Toolbox is a Java-based application. To connect the Database
Toolbox to a database’s ODBC driver, the toolbox uses a JDBC/ODBC bridge,
which is supplied and automatically installed as part of the toolbox.

The following illustrates the use of drivers with the Database Toolbox.

Structured Query Language (SQL)
The Database Toolbox supports American National Standards Institute
(ANSI) standard SQL commands.

DatabaseODBC Driver

DatabaseJDBC DriverDatabase
Toolbox

JDBC/ODBC
Bridge

Database
Toolbox

PC platforms

UNIX and PC

1 Installation and Setup

1-4

Data Types
You can import the following data types into MATLAB and export them back
to your database:

• BOOLEAN
• CHAR
• DATE
• DECIMAL
• DOUBLE
• FLOAT
• INTEGER
• NUMERIC
• REAL
• SMALLINT
• TIME
• TIMESTAMP
• TINYINT
• VARCHAR

Any other type of data that is imported is treated as a VARCHAR by MATLAB. If
you import a data type that cannot be treated as a VARCHAR, you see an
unsupported data message from MATLAB.

If you try to export types of MATLAB data not on this list to a database, you see
a syntax error from the database.

Installing the Database Toolbox

1-5

Installing the Database Toolbox
To install the Database Toolbox, select it with any other MATLAB toolboxes
you want to install when you install MATLAB. For more information, see the
installation documentation for your platform.

1 Installation and Setup

1-6

Setting Up a Data Source
Before you can connect from the Database Toolbox to a database, you need to
set up a data source. A data source consists of data that you want the toolbox
to access and information on how to find the data, such as driver, directory,
server, or network names. You assign a name to each data source.

The instructions for setting up a data source differ slightly depending on your
configuration. Use one of these sets of instructions:

• For MATLAB PC platforms whose database resides on that PC, use “Setting
Up a Local Data Source for ODBC Drivers” on page 1-6.

• For MATLAB PC platforms whose database resides on another system to
which the PC is networked, use “Setting Up a Remote Data Source for ODBC
Drivers” on page 1-8.

• For MATLAB platforms that connect to a database via a JDBC driver, use
“Setting Up a Data Source for JDBC Drivers” on page 1-12.

Setting Up a Local Data Source for ODBC Drivers
Follow this procedure to set up a local data source for a PC. This procedure uses
as an example, the Microsoft ODBC driver Version 4.00.42 and the U.S.
English version of Microsoft Access 97 for Windows NT. If you have a different
configuration, you may have to modify the instructions.

If you have Microsoft Access installed and want to use many of the examples in
this document as written, set up these two data sources:

• dbtoolboxdemo data source – Uses the tutorial database provided with the
Database Toolbox in $matlabroot\toolbox\database\dbdemos

• SampleDB data source – Uses the Microsoft Access sample database called
Northwind

1 From the Windows Start menu, select Control Panel from the Settings
menu.

2 Double-click ODBC Data Sources.

The ODBC Data Source Administrator dialog box appears, listing any
existing data sources.

Setting Up a Data Source

1-7

3 Select the User DSN tab.

A list of existing system data sources appears.

4 Click Add. A list of installed ODBC drivers appears in the Create New Data
Source dialog box.

5 Select the ODBC driver that the local data source you are creating will use
and click Finish.

- For the examples in this book, select Microsoft Access Driver.

- Otherwise, select the driver for your database.

The ODBC Setup dialog box appears for the driver you selected. Note that
the dialog box for your driver might be different from the following.

6 Provide a Data Source Name and Description.

For the first example data source, type dbtoolboxdemo as the data source
name. For the other example data source, type SampleDB as the data source
name.

Note that for some databases, the ODBC Setup dialog box requires you to
provide additional information.

1 Installation and Setup

1-8

7 Select the database that this data source will use. Note that for some
drivers, you skip this step.

a In the ODBC Setup dialog box, click Select.

The Select Database dialog box appears.

b Find and select the database you want to use.

For the dbtoolboxdemo data source, select tutorial.mdb in
$matlabroot\toolbox\database\dbdemos.

For the SampleDB data source, select Northwind.mdb in the
msoffice\...\Samples directory.

c Click OK to close the Select Database dialog box.

8 In the ODBC Setup dialog box, click OK.

9 Click OK to close the ODBC Data Source Administrator dialog box.

Setting Up a Remote Data Source for ODBC Drivers
Follow this procedure to set up a data source that resides on a remote system
to which your PC has network access. This procedure uses the Microsoft ODBC
driver Version 4.00.42 and the U.S. English version of Microsoft Access 97 for
Windows NT installed on a networked server. If you have a different
configuration, you may have to modify the instructions.

Setting Up a Data Source

1-9

If you have Microsoft Access installed and want to use the examples as written,
set up these two data sources:

• dbtoolboxdemo data source – Uses the Microsoft Access tutorial database
provided with the Database Toolbox in
$matlabroot\toolbox\database\dbdemos

• SampleDB data source – Uses the Microsoft Access sample database called
Northwind

1 From the Windows Start menu, select Control Panel from the Settings
menu.

2 Double-click ODBC.

The ODBC Data Source Administrator dialog box appears.

3 Select the System DSN tab.

A list of existing system data sources appears.

4 Click Add. A list of installed ODBC drivers appears in the Create New Data
Source dialog box.

5 Select the ODBC driver that the remote data source you are creating will use
and click Finish.

- For the examples in this book, select Microsoft Access Driver.

- Otherwise, select the driver for your database.

The ODBC Setup dialog box appears for the driver you selected. Note that
the dialog box for your driver might be different from the one shown in the
following figure.

1 Installation and Setup

1-10

6 Provide a Data Source Name and Description.

For one of the example data sources, type dbtoolboxdemo as the data source
name. For the other example data source, type SampleDB as the data source
name.

Note that for some databases, the ODBC Setup dialog box requires you to
provide additional information.

Setting Up a Data Source

1-11

7 Select the database that this data source will use. Note that for some
drivers, you skip this step.

a In the ODBC Setup dialog box, click Select.

The Select Database dialog box appears.

b Click Network.

The Map Network Drive dialog box appears.

1 Installation and Setup

1-12

c Find and select the directory containing the database you want to use,
and then click OK. The Map Network Drive dialog box closes.

For the dbtoolboxdemo data source, select the
$matlabroot\toolbox\database\dbdemos directory.

For the SampleDB data source, select the msoffice\...\Samples
directory.

In the example shown, the database is in
SERVERS\APPLICATIONS\Applications.

d Locate the database in the Select Database dialog box.

For the dbtoolboxdemo data source, select tutorial.mdb. For the
SampleDB data source, select Northwind.mdb.

e Click OK to close the Select Database dialog box.

8 In the ODBC Setup dialog box, click OK.

9 Click OK to close the ODBC Data Source Administrator dialog box.

Setting Up a Data Source for JDBC Drivers

1 To set up a data source for use with a UNIX workstation or PC using JDBC
drivers, you include a pointer to the JDBC driver location in the MATLAB
$matlabroot/toolbox/local/classpath.txt file. For example, add the
following line to your classpath.txt file.

/dbtools/classes111.zip

where classes111.zip is the file containing JDBC drivers. The file is
available from your database provider.

2 If you want to use the Visual Query Builder, perform these steps after
completing step 1 to set up the JDBC data source.

a Start MATLAB if it is not already running.

Setting Up a Data Source

1-13

b Access the Configure Data Source dialog box by typing

confds

Any existing data sources are listed under Data source.

c Complete the Name, Driver, and URL fields. For example:

Name: orcl

Driver: oracle.jdbc.driver.OracleDriver

URL: jdbc:oracle:thin:@144.212.33.130:1521:

d Click Add to add the data source.

e Click Test to establish a test connection to the data source. You are
prompted to supply a username and password if the database requires it.

f Click OK to save the changes and close the Configure Data Source
dialog box.

To remove the data source, select it from the Data source list in the
Configure Data Source dialog box, click Remove, and click OK.

1 Installation and Setup

1-14

Starting the Database Toolbox
To use the Database Toolbox functions, just type the function you want to use.
For more information, see “Tutorial for Functions” on page 3-1.

To start the Visual Query Builder, type querybuilder. For more information,
see “Visual Query Builder Tutorial” on page 2-1.

2
Visual Query Builder
Tutorial

About the Visual Query Builder 2-2
Visual Query Builder Interface 2-2
When to Use the Visual Query Builder 2-3
When to Use Database Toolbox Functions 2-4
Examples Using the Visual Query Builder 2-4
Online Help for the Visual Query Builder 2-5

Starting and Quitting the Visual Query Builder 2-6

Building, Running, and Saving a Query 2-7
Building and Running a Query 2-7
NULL Values . 2-9
Using Retrieved Data in MATLAB 2-10
Saving a Query 2-10
Clearing Variables from the Data Area 2-11

Viewing Query Results 2-12
Relational Display of Data 2-13
Chart Display of Results 2-16
Report Display of Results in a Table 2-19
Display of Results in the Report Generator 2-20

Fine-Tuning Queries Using Advanced Query Options . 2-22
Retrieving Unique Occurrences 2-22
Retrieving Information That Meets Specified Criteria 2-23
Presenting Results in Specified Order 2-32
Creating Subqueries for Values from Multiple Tables 2-35
Creating Queries for Results from Multiple Tables 2-41
Other Features in Advanced Query Options 2-45

2 Visual Query Builder Tutorial

2-2

About the Visual Query Builder
The Visual Query Builder (VQB) is an easy-to-use graphical user interface for
retrieving data from your database. With the VQB, you build queries to
retrieve data by selecting information from lists rather than by entering
MATLAB functions. The VQB retrieves the data from a database and puts it in
a MATLAB cell array so you can process the data using MATLAB’s suite of
functions. With the VQB, you can display the retrieved information in
relational tables, reports, and charts.

Visual Query Builder Interface
To start the Visual Query Builder interface, type querybuilder at the
MATLAB prompt.

The following illustration depicts the key features of the interface and points
out the main steps that you perform, in order, from 1 through 10, to build and
run a query using the interface. These steps are detailed in examples
throughout this chapter.

About the Visual Query Builder

2-3

When to Use the Visual Query Builder
If you want to retrieve information from relational databases for use in
MATLAB and you are not familiar with the Structured Query Language (SQL)
and database applications, use the Visual Query Builder.

If you are familiar with SQL and your database applications, use the Visual
Query Builder to build SQL queries easily and to import results into MATLAB,
or use Database Toolbox functions instead.

Save, load, and
run queries.

View query results in table,
chart, and report formats.

Select the data
source.

Select the
tables.

Select the fields you
want to retrieve.

View the SQL
statement.

Assign a
variable for the
results.

Run the
query.

Double-click to
view query results
in the MATLAB
command window.

Refine the
query, if
needed.

1 2 3

4

5

6

8

7

9

10

2 Visual Query Builder Tutorial

2-4

When to Use Database Toolbox Functions
Use the Database Toolbox functions to:

• Export results from MATLAB to databases.

• Write MATLAB-based applications that access databases.

• Perform other functions not available with the Visual Query Builder.

You can also use Database Toolbox functions instead of the Visual Query
Builder to import data into MATLAB. For information on how to use the
functions, see Chapter 3, “Tutorial for Functions” and Chapter 4, “Function
Reference.”

Examples Using the Visual Query Builder
Many of the Visual Query Builder features are demonstrated in this book using
simple examples. These examples use the dbtoolboxdemo data source
(tutorial database). Instructions for setting up this data source are in
Chapter 1, “Installation and Setup.”

If your version of Microsoft Access is different than that referred to in
“Installation and Setup”, you might get different results than those presented
here. If your results differ, check your version of Access and check the table and
column names in your databases to see if they are the same as those used in
the tutorial.

The examples used are:

• “Starting and Quitting the Visual Query Builder” on page 2-6.

• “Building, Running, and Saving a Query” on page 2-7.

• “Viewing Query Results” on page 2-12.

• “Fine-Tuning Queries Using Advanced Query Options” on page 2-22.

Example in the Visual Query Builder Demo
In the Visual Query Builder dialog box, select Demo from the Help menu.
This runs a demonstration of the main features of the VQB. The demo runs on
PC platforms only. It uses the dbtoolboxdemo data source (tutorial database).
Instructions for setting up this data source are in Chapter 1, “Installation and
Setup”.

About the Visual Query Builder

2-5

If your version of Microsoft Access is different than that referred to in
“Installation and Setup”, you might get different results than those shown in
the demo. If your results differ, check your version of Access and check the
table and column names in your databases to see if they are the same as those
used in the demo.

Online Help for the Visual Query Builder
While using the Visual Query Builder, get online help by:

• Selecting Visual Query Builder Help from the Help menu. This tutorial for
the Visual Query Builder appears in the Help browser.

• Clicking Help in any Visual Query Builder dialog box. Detailed instructions
for that dialog box appear in the Help browser.

2 Visual Query Builder Tutorial

2-6

Starting and Quitting the Visual Query Builder
To start the Visual Query Builder, type

querybuilder

The Visual Query Builder dialog box appears.

To quit using the Visual Query Builder, select Exit from the Query menu, or
click the close box.

Building, Running, and Saving a Query

2-7

Building, Running, and Saving a Query
Topics covered in this section are:

• “Building and Running a Query” on page 2-7

• “NULL Values” on page 2-9

• “Using Retrieved Data in MATLAB” on page 2-10

• “Saving a Query” on page 2-10

• “Clearing Variables from the Data Area” on page 2-11

Building and Running a Query
Build and run a query to import data from your database into MATLAB. Then
save the query for use again later.

1 Start the Visual Query Builder – see “Starting and Quitting the Visual
Query Builder” on page 2-6.

2 From the Data source list box, select the data source from which you want
to import data. For this example, select dbtoolboxdemo, which is the data
source for the tutorial database.

The list includes all data sources you set up. If you do not see the data source
you want to use, you need to add it – see “Setting Up a Data Source” in
Chapter 1.

After selecting a data source, the list of tables in that data source appears.

3 From the Tables list box, select the table that contains the data you want to
import. For this example, select salesVolume.

After selecting a table, the fields (column names) in that table appear.

4 From the Fields list box, select the fields containing the data you want to
import. To select more than one field, hold down the Ctrl key or Shift key
while selecting. For this example, select the fields StockNumber, January,
February, and March.

As you select items from the Fields list, the query appears in the SQL
statement field.

2 Visual Query Builder Tutorial

2-8

5 In the MATLAB workspace variable field, assign a name for the data
returned by the query. For this example, use A.

6 Click Execute to run the query and retrieve the data.

The query runs, retrieves data, and stores it in a MATLAB cell array, which
in this example is assigned to the variable A. In the Data area, information
about the query result appears.

Building, Running, and Saving a Query

2-9

7 Double-click A in the Data section. The contents of A is displayed in the
Command Window. Another way to see the contents of A is to type A in the
Command Window.

As an example of how to read the results, sales for item 400876 are 3000 in
January, 2400 in February, and 1500 in March.

NULL Values
In the example results, there are two NaN values in the data, which represent
NULLS. You can specify how you want the query builder to represent NULL data.

2 Visual Query Builder Tutorial

2-10

1 Select Preferences from the Query menu.

The Preferences dialog box appears, showing the current settings for
handling NULL values.

2 Change values in the Preferences dialog box and click OK. For the example,
change the value for Read NULL numbers as: from NaN to 0.

3 Click Execute to run the query again.

4 To see the results, type A in the Command Window.

The results show 0’s where previously there were NaN values.

Preferences apply to the current MATLAB session.

Another way to set preferences is by using the setdbprefs command. To use
the same preferences whenever you run MATLAB, include the setdbprefs
command in your startup file.

Using Retrieved Data in MATLAB
When you execute a query, MATLAB retrieves the data and stores it in the
variable name you provided as a cell array, where each element in the array
points to an array that consists of a single value. The cell array structure allows
a mixture of data types.

For more information about working with cell arrays, see “Working with Cell
Arrays in MATLAB” on page 3-36.

Saving a Query
After building a query in the VQB, you can save it for later use. To save a query:

Building, Running, and Saving a Query

2-11

1 Select Save from the Query menu.

The Save SQL Statement dialog box appears.

2 Complete the File name field and click Save. For the example, type basic
as the filename.

The query is saved with a .qry extension.

The MATLAB workspace variable name you assigned for the query results
and the query preferences are not saved as part of the query.

Using a Saved Query
To use a saved query:

1 Select Load from the Query menu.

The Load SQL Statement dialog box appears.

2 Provide the name of the query you want to load and click Open. For the
example, select basic.qry.

The VQB fields reflect the values for the saved query.

3 Assign a MATLAB workspace variable and click Execute to run the query.

Clearing Variables from the Data Area
Variables in the Data area include those you assigned for query results, as well
as any variables you assigned in the Command Window. The variables appear
in the Data area when you execute a query. They remain in the Data area until
you clear them in the Command Window using the clear command, and then
execute a query.

2 Visual Query Builder Tutorial

2-12

Viewing Query Results
After running a query in the Visual Query Builder, you can view:

• The retrieved data in the MATLAB command window, as described in step 7
of “Building, Running, and Saving a Query” on page 2-7.

• A “Relational Display of Data” on page 2-13.

• A “Chart Display of Results” on page 2-16; for example, a pie chart.

• A “Report Display of Results in a Table” on page 2-19.

• A “Display of Results in the Report Generator” on page 2-20

Viewing Query Results

2-13

Relational Display of Data

1 After executing a query, select Data from the Display menu.

The query results appear in a figure window.

The display shows only the unique values for each field. For example, there
are 10 entries in the StockNumber field, 8 entries in the January and
February fields, and 10 entries in the March field, corresponding to the
number of unique values in those fields. Therefore, do not read each row of
the table as a single record.

2 Visual Query Builder Tutorial

2-14

2 Click a value in the display, for example StockNumber 400876, to see the
associated values.

The data associated with the selected value is shown in bold and connected
via a dotted line. For example, sales for item 400876 are 3000 in January,
2400 in February, and 1500 in March.

As another example, click 3000 in the January field. There are three
different items with sales of 3000 units in January, 400314, 400876, and
400999.

Viewing Query Results

2-15

3 Because the display is presented in a MATLAB figure window, you can use
some MATLAB figure functions. For example, you can print the figure and
annotate it. For more information, use the Figure window’s Help menu.

4 If the search results include many entries, the display might not effectively
show all of them. You can stretch the window to make it larger, narrow the
search so there are fewer results, or use “Report Display of Results in a
Table” on page 2-19.

2 Visual Query Builder Tutorial

2-16

Chart Display of Results

1 After executing a query, select Chart from the Display menu.

The Charting dialog box appears.

2 Select the type of chart you want to display from the Charts listbox. For
example, select pie to display a pie chart.

The preview of the chart at the bottom of the dialog box shows the result of
your selection. For this example, it shows the pie chart, with each stock item
appearing in a different color.

Viewing Query Results

2-17

3 Select the data you want to display in the chart from the X data, Y data, and
Z data listboxes. For the pie chart example, select March from the X data list
box to display a pie chart of March data.

The preview of the chart at the bottom of the dialog box reflects the selection
you made. For this example, the pie chart shows percentages for March data.

4 To display a legend, which maps the colors to the stock numbers, check the
Show legend checkbox.

The Legend labels become available for you to select from.

5 Select StockNumber from the Legend labels listbox.

A legend appears in the preview of the chart.

2 Visual Query Builder Tutorial

2-18

6 Click Display.

The pie chart appears in a figure window. Because the display is presented
in a MATLAB figure window, you can use some MATLAB figure functions
such as printing or annotating the figure. For more information, use the
Figure window’s Help menu.

For example:

- Resize the window by dragging any corner or edge.

- Drag the legend to another position.

- Annotate the chart using the Tools menu and the annotation buttons in
the toolbar . For more information, use the Figure window’s
Help menu.

Viewing Query Results

2-19

7 Click Close to close the Charting dialog box.

There are many different ways to present the query results using the chart
feature. For more information, click Help in the Charting dialog box.

Report Display of Results in a Table
The report display presents the results in your system’s default Web browser.

1 Because some browser configurations do not launch automatically, start
your Web browser before using this feature.

2 After executing a query, select Report from the Display menu.

The query results appear as a table. If you have the Report Generator
product installed, the appearance of the report is slightly different.

2 Visual Query Builder Tutorial

2-20

Each row represents a record from the database. For example, sales for item
400876 are 3000 in January, 2400 in February, and 1500 in March.

3 Use your Web browser to save the report as an HTML page if you want to
view it later. If you do not save it, the report will be overwritten the next
time you select Report from the Display menu.

Display of Results in the Report Generator
You need to have the MATLAB Report Generator product installed locally on
your system to use this option.

1 Because some browser configurations do not launch automatically, start
your Web browser before using this feature.

2 After executing a query, select Report Generator from the Display menu.

The Setup File List dialog box appears.

Viewing Query Results

2-21

3 Select databasetlbx.rpt from the list.

4 To modify the report format, click Edit. See the help for the Report
Generator for instructions.

5 To view the report, click Report.

The report appears in your system’s default Web browser.

This example shows a report of sales volume over three months by product
stock number. From the report, you can see that sales for item 400876 are 3000
in January, 2400 in February, and 1500 in March.

2 Visual Query Builder Tutorial

2-22

Fine-Tuning Queries Using Advanced Query Options
Use advanced query options in the Visual Query Builder for:

• “Retrieving Unique Occurrences” on page 2-22.

• “Retrieving Information That Meets Specified Criteria” on page 2-23.

• “Presenting Results in Specified Order” on page 2-32.

• “Creating Subqueries for Values from Multiple Tables” on page 2-35.

• “Creating Queries for Results from Multiple Tables” on page 2-41.

• “Other Features in Advanced Query Options” on page 2-45.

For more information about advanced query options, select Help in any of the
dialog boxes for the options.

Retrieving Unique Occurrences
In the Visual Query Builder Advanced query options, select Distinct to limit
results to only unique occurrences. Select All to retrieve all occurrences. For
example:

1 Select the Data source; for example, dbtoolboxdemo.

2 Select the Tables; for example, SalesVolume.

3 Select the Fields; for example, January.

4 Run the query to retrieve all occurrences.

a In Advanced query options, select All.

b Assign a MATLAB workspace variable; for example, All.

c Click Execute.

5 Run the query to retrieve only unique occurrences.

a In Advanced query options, select Distinct.

b Assign a MATLAB workspace variable, for example, Distinct.

c Click Execute.

Fine-Tuning Queries Using Advanced Query Options

2-23

6 In the Data area, the Workspace variable size shows 10x1 for All and 8x1
for Distinct.

7 In the Command Window, type All, Distinct to display the query results.

The value 3000, appears three times in All, but appears only once in
Distinct.

Retrieving Information That Meets Specified Criteria
Use the Where field in Advanced query options to retrieve only the
information that meets criteria you specify. This example uses basic.qry,
created and saved in “Building, Running, and Saving a Query” on page 2-7. It

2 Visual Query Builder Tutorial

2-24

limits the results to those stock numbers greater than 400000 and less than
500000.

1 Load basic.qry. For instructions, see “Using a Saved Query” on page 2-11.

2 In Advanced query options, click Where.

The Where Clauses dialog box appears.

3 Select the Fields whose values you want to restrict. For example, select
StockNumber.

4 Use Condition to specify the criteria. For example, specify that the
StockNumber be greater than 400000.

a Select Relation.

b From the drop-down list to the right of Relation, select >.

Fine-Tuning Queries Using Advanced Query Options

2-25

c In the field to the right of the drop-down list, type 400000.

d Click Apply.

The clause appears in the Current clauses area.

5 You can add another condition. First you edit the current clause to add the
AND operator to it, and then you provide the new condition.

a Select StockNumber > 400000 from Current clauses.

2 Visual Query Builder Tutorial

2-26

b Click Edit (or double-click the StockNumber entry in Current clauses).

The Condition reflects the StockNumber clause.

c For Operator, select AND.

d Click Apply.

The Current clauses updates to show

StockNumber > 400000 AND

6 Add the new condition. For example, specify that StockNumber must also be
less than 500000.

a From Fields, select StockNumber.

b Select Relation from Condition.

c From the drop-down list to the right of Relation, select <.

d In the field to the right of the drop-down list, type 500000.

e Click Apply.

The Current clauses area now shows

StockNumber > 400000 AND
StockNumber < 500000

7 Click OK.

The Where Clauses dialog box closes. The SQL statement in the Visual
Query Builder dialog box reflects the where clause you specified.

8 Assign a MATLAB workspace variable; for example, A.

9 Click Execute.

The results are a 6-by-4 matrix.

Fine-Tuning Queries Using Advanced Query Options

2-27

10 To view the results, type A in the Command Window. Compare these to the
results for all stock numbers, which is a 10-by-4 matrix (see step 6 in
“Building and Running a Query”).

11 Select Save from the Query menu and name this query basic_where.qry.

Grouping Criteria
In the Where Clauses dialog box, you can group together constraints so that
the group of constraints is evaluated as a whole in the query. Continuing with
the example, basic_where.qry, where StockNumber is greater than 400000 and
less than 50000, modify the query to retrieve results where sales in any of the
three months is greater than 1500 units, as long as sales for each of the three
months is greater than 1000 units. The Where Clauses dialog box appears as

2 Visual Query Builder Tutorial

2-28

follows to retrieve data where the StockNumber is greater than 400000 and less
than 50000.

1 Add the criteria that retrieves data where sales in any of the three months
is greater than 1500 units.

a In Current clauses, select StockNumber < 500000, and then click Edit.

b For Operator, select OR, and then click Apply.

c In Fields, select January. For Relation, select > and type 1500 in the field
for it. For Operator, select OR, and then click Apply.

d In Fields, select February. For Relation, select > and type 1500 in the
field for it. For Operator, select OR, and then click Apply.

Fine-Tuning Queries Using Advanced Query Options

2-29

e In Fields, select March. For Relation, select > and type 1500 in the field
for it. Then click Apply.

The Where clauses dialog box appears as follows.

2 Group the criteria requiring any of the months to be greater than 1500 units.

a In Current clauses, select the statement January >1500 OR.

b Shift-click to also select February > 1500 OR.

c Shift-click to also select March > 1500.

2 Visual Query Builder Tutorial

2-30

d Click Group.

An opening parenthesis, (, is added before January, and a closing
parenthesis,), is added after March > 1500, signifying that these
statements are evaluated as a whole.

3 Add the criteria that retrieves data where sales in each of the three months
is greater than 1000 units.

a In Current clauses, select the statement March >1500) and then click
Edit.

b For Operator, select AND, and then click Apply.

c In Fields, select January. For Relation, select > and type 1000 in the field
for it. For Operator, select AND, and then click Apply.

d In Fields, select February. For Relation, select > and type 1000 in the
field for it. For Operator, select AND, and then click Apply.

Fine-Tuning Queries Using Advanced Query Options

2-31

e In Fields, select March. For Relation, select > and type 1000 in the field
for it. Then click Apply.

The Where clauses dialog box appears as follows.

f Click OK.

The Where Clauses dialog box closes. The SQL statement in the Visual
Query Builder dialog box reflects the modified where clause. Because the
clause is so long, you have to use the right arrow key in the field to see all of
the contents.

4 Assign a MATLAB workspace variable, for example, AA.

5 Click Execute.

The results are a 7-by-4 matrix.

2 Visual Query Builder Tutorial

2-32

6 To view the results, type AA in the Command Window.

Removing Grouping. To remove grouping criteria in the Where Clauses dialog
box, in Current clauses, select all of the statements in the group and then click
Ungroup. The parentheses are removed from the statements.

For the above example, to remove the grouping, select (January > 1000 AND,
and then Shift-click to also select February > 1000 AND, and March > 1000).
Then click Ungroup. The three statements are no longer grouped.

Presenting Results in Specified Order
By default, the order of the rows in the query results depends on their order in
the database, which is effectively random. Use the Order by field in Advanced
query options to specify the order in which results appear. This example uses
basic_where.qry, created and saved in “Retrieving Information That Meets
Specified Criteria” on page 2-23. This example sorts the results of
basic_where.qry, so that January is the primary sort field, February the
secondary, and March the last. Results for January and February are
ascending, and for March, are descending.

1 Load basic_where.qry. For instructions, see “Using a Saved Query” on
page 2-11.

Fine-Tuning Queries Using Advanced Query Options

2-33

2 In Advanced query options, click Order by.

The ORDER BY Clauses dialog box appears.

3 For the Fields whose results you want to specify the order of, specify the
Sort key number and Sort order. For example, specify January as the
primary sort field, with results displayed in ascending order.

a From Fields, select January.

b For Sort key number, type 1.

c For Sort order, select Ascending.

d Click Apply.

The Current clauses area now shows

January ASC

4 Specify February as the second sort field, with results displayed in
ascending order.

a From Fields, select February.

b For Sort key number, type 2.

c For Sort order, select Ascending.

2 Visual Query Builder Tutorial

2-34

d Click Apply.

The Current clauses area now shows

January ASC
February ASC

5 Specify March as the third sort field, with results displayed in descending
order.

a From Fields, select March.

b For Sort key number, type 3.

c For Sort order, select Descending.

d Click Apply.

The Current clauses area now shows

January ASC
February ASC
March DESC

6 Click OK.

The ORDER BY Clauses dialog box closes. The SQL statement in the
Visual Query Builder reflects the order by clause you specified.

7 Assign a MATLAB workspace variable, for example, B.

8 Click Execute.

Fine-Tuning Queries Using Advanced Query Options

2-35

9 To view the results, type B in the Command Window. Compare these to the
unordered query results, shown as A.

For B, results are first sorted by January sales, in ascending order, from
1200 for 400455 to 5000 for 400345.

For items 400999, 400314, and 400876, January sales were equal at 3000.
Therefore, the second sort key applies, February sales in ascending order,
which were 1500, 2400, and 2400 respectively.

For 400314 and 400876, February sales were both 2400, so the third sort key
applies, March sales in descending order, which were 1800 and 1500
respectively.

Creating Subqueries for Values from Multiple Tables
Use the Where feature in Advanced query options to specify a subquery,
which further limits a query by using values found in other tables. This

2 Visual Query Builder Tutorial

2-36

example uses basic.qry (see “Building, Running, and Saving a Query” on
page 2-7).

This example retrieves sales volumes for the product whose description is
Building Blocks. The table used for basic.qry, salesVolume, has sales
volumes and a stock number field, but not a product description field. Another
table, productTable, has the product description and stock number, but not
the sales volumes. Therefore, the query needs to look at productTable to get
the stock number for the product whose description is Building Blocks, and
then has to look at the salesVolume table to get the sales volume values for
that stock number.

1 Load basic.qry. For instructions, see “Using a Saved Query” on page 2-11.

This creates a query that retrieves the values for January, February, and
March sales for all stock numbers.

2 In Advanced query options, click Where.

The Where Clauses dialog box appears.

Fine-Tuning Queries Using Advanced Query Options

2-37

3 Click Subquery.

The Subquery dialog box appears.

4 From Tables, select the table that contains the values you want to associate.
In this example, select productTable, which contains the association
between the stock number and the product description.

The fields in that table appear.

5 From Fields, select the field that is common to this table and the table from
which you are retrieving results (the table you selected in the Visual Query
Builder dialog box). In this example, select stockNumber.

This begins creating the SQL subquery statement to retrieve the stock
number from productTable.

2 Visual Query Builder Tutorial

2-38

6 Create the condition that limits the query. In this example, limit the query
to those product descriptions that are Building Blocks.

a In Subquery WHERE clauses, select productDescription from Fields.

b For Condition, select Relation.

c From the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, type 'Building Blocks'
(include the single quotation marks).

e Click Apply.

The clause appears in the Current subquery WHERE clauses area and
updates the SQL subquery statement.

7 In the Subquery dialog box, click OK.

The Subquery dialog box closes.

Fine-Tuning Queries Using Advanced Query Options

2-39

8 In the WHERE Clauses dialog box, click Apply.

This updates the Current clauses area using the subquery criteria specified
in steps 2 through 7.

9 In the WHERE Clauses dialog box, click OK.

This closes the WHERE Clauses dialog box and updates the SQL statement
in the Visual Query Builder dialog box.

10 In the Visual Query Builder dialog box, assign a MATLAB workspace
variable, for example, C.

11 Click Execute.

The results are a 1-by-4 matrix.

2 Visual Query Builder Tutorial

2-40

12 Type C at the prompt in the MATLAB Command Window to see the results.

13 The results are for item 400345, which has the product description Building
Blocks, although that is not evident from the results. To verify that the
product description is actually Building Blocks, run this simple query:

a Select dbtoolboxdemo as the Data source.

b Select productTable from Tables.

c Select stockNumber and productDescription from Fields.

d Assign a MATLAB workspace variable, for example, P.

e Click Execute.

Fine-Tuning Queries Using Advanced Query Options

2-41

f Type P at the prompt in the Command Window to view the results.

The results show that item 400345 has the product description
'Building Blocks'. “Creating Queries for Results from Multiple Tables”
on page 2-41 creates a query that includes the product description in the
results.

Creating Queries for Results from Multiple Tables
Select multiple tables when creating a query whose results include values from
both tables. This is called a join operation in SQL.

This example retrieves sales volumes by product description. The example is
very similar to the example in “Creating Subqueries for Values from Multiple
Tables” on page 2-35. The difference is that this example creates a query that
uses both tables in order to include the product description rather than the
stock number in the results.

The table salesVolume, has sales volumes and a stock number field, but not a
product description field. Another table, productTable, has the product
description and the stock number, but not sales volumes. Therefore, the query
needs to retrieve data from both tables and equate the stock number from
productTable with the stock number from the salesVolume table.

2 Visual Query Builder Tutorial

2-42

1 Select the Data source, for example, dbtoolboxdemo.

The tables in that data source appear in Tables.

2 From Tables, select the tables from which you want to retrieve data. For
example, Ctrl-click on productTable and salesVolume to select both tables.

The fields (columns) in those tables appear in Fields. Note that the field
names now include the table names. For example,
productTable.stockNumber is the field name for the stock number in the
product table, and salesVolume.StockNumber is the field name for the stock
number in the sales volume table.

3 From Fields, select these fields to be included in the results. For example,
Ctrl-click on productTable.productDescription, salesVolume.January,
salesVolume.February, and salesVolume.March.

4 In Advanced query options, click Where to make necessary associations
between fields in different tables. For example, the where clause equates the
productTable.stockNumberwith the salesVolume.StockNumber so that the
product description is associated with sales volumes in the results.

The WHERE Clauses dialog box appears.

5 In the WHERE Clauses dialog box:

a Select productTable.stockNumber from Fields.

b For Condition, select Relation.

c From the drop-down list to the right of Relation, select =.

d In the field to the right of the drop-down list, type
salesVolume.StockNumber.

Fine-Tuning Queries Using Advanced Query Options

2-43

e Click Apply.

The clause appears in the Current clauses area.

f Click OK.

The WHERE Clauses dialog box closes. The SQL statement in the
Visual Query Builder dialog box reflects the where clause.

6 Assign a MATLAB workspace variable, for example, P1.

2 Visual Query Builder Tutorial

2-44

7 Click Execute to run the query.

The results are a 10-by-4 matrix.

Fine-Tuning Queries Using Advanced Query Options

2-45

8 Type P1 at the prompt in the Command Window to see the results.

Other Features in Advanced Query Options
For more information about advanced query options, select the option and then
click Help in the resulting dialog box. For example, click Having in Advanced
query options, and then click Help in the Having Clauses dialog box.

2 Visual Query Builder Tutorial

2-46

3

Tutorial for Functions

Introduction . 3-2

About Objects and Methods for the Database Toolbox . 3-4

Importing Data into MATLAB from a Database 3-6

Viewing Information About the Imported Data 3-11

Exporting Data from MATLAB to a New Record in a Database 3-14

Exporting Data from MATLAB, Replacing Existing Data in a Database 3-20

Exporting Multiple Records from MATLAB 3-22

Accessing Metadata 3-26
Resultset Metadata Object 3-32

Performing Driver Functions 3-33

Working with Cell Arrays in MATLAB 3-36
Viewing Query Results 3-36
Retrieving Elements of Query Results 3-38
Performing Functions on Cell Arrays 3-39
Creating Cell Arrays for Exporting Data from MATLAB . . . 3-40

3 Tutorial for Functions

3-2

Introduction
This tutorial demonstrates many of the Database Toolbox functions using
simple examples.

1 “Importing Data into MATLAB from a Database” on page 3-6.

2 “Viewing Information About the Imported Data” on page 3-11.

3 “Exporting Data from MATLAB to a New Record in a Database” on
page 3-14.

4 “Exporting Data from MATLAB, Replacing Existing Data in a Database” on
page 3-20.

5 “Exporting Multiple Records from MATLAB” on page 3-22.

6 “Accessing Metadata” on page 3-26.

7 “Performing Driver Functions” on page 3-33.

8 “Working with Cell Arrays in MATLAB” on page 3-36.

In addition, for those who are interested in objects and methods, see “About
Objects and Methods for the Database Toolbox” on page 3-4.

Examples 1 through 4 use the SampleDB data source. Instructions for setting up
this data source are in Chapter 1, “Installation and Setup.” Examples 5 and 6
use the dbtoolboxdemo data source. Instructions for setting up this data source
are in Chapter 1, “Installation and Setup.” Example 7 is not one you can run
exactly as it is written since it relies on a specific JDBC connection and
database, however, it serves as an illustration of what you can do. Example 8
shows some simple ways to work with cell arrays. Cell arrays are part of
MATLAB’s core functionality, but some users may not be familiar with them.
Because the Database Toolbox makes use of cell arrays, some simple examples
are included here.

If your version of Microsoft Access is different than that referred to in
“Installation and Setup”, you might get different results than those presented
here. If your results differ, check your version of Access and check the table and
column names in your databases to see if they are the same as those used in
this tutorial.

Introduction

3-3

M-files containing functions used in examples 1 through 5 are in the
matlab\toolbox\database\dbdemos directory. As you work with the examples
in this chapter, you can open the M-files to see the functions and copy them, or
you can run the M-files to see the results.

For more information on the functions used in this tutorial type doc followed
by the function name, or see the “Function Reference” section.

3 Tutorial for Functions

3-4

About Objects and Methods for the Database Toolbox
The Database Toolbox is an object-oriented application. The toolbox has the
following objects:

• Cursor

• Database

• Database metadata

• Driver

• Drivermanager

• Resultset

• Resultset metadata

Each object has its own method directory, which begins with an @ sign, in the
$matlabroot\toolbox\database\database directory. The methods for
operating on a given object are the M-file functions in the object’s directory.

You can use the Database Toolbox with no knowledge of or interest in its
object-oriented implementation. But for those that are interested, some of its
useful aspects follow.

• You use constructor functions to create objects, such as running the fetch
function to create a cursor object containing query results. MATLAB returns
not only the object but stored information about the object. Since objects are
structures in MATLAB, you can easily view the elements of the returned
object.

As an example, if you create a cursor object curs using the fetch function,
MATLAB returns
curs =

Attributes: []
 Data: {10x1 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select country from customers'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]

About Objects and Methods for the Database Toolbox

3-5

 Fetch: [1x1
 com.mathworks.toolbox.database.fetchTheData]

You can easily access information about the cursor object, including the
results, which are in the Data element of the cursor object. To view the
contents of the element, which is a 10-by-1 cell array in this example, you
type

curs.Data

MATLAB returns
ans =
 'Germany'
 'Mexico'
 'Mexico'
 'UK'
 'Sweden'
 'Germany'
 'France'
 'Spain'
 'France'

• Objects allow the use of overloaded functions. For example, to view
properties of objects in the Database Toolbox, you use the get function,
regardless of the object. This means you only have to remember one function,
get, rather than having to remember specific functions for each object. The
properties you retrieve with get differ, depending on the object, but the
function itself always has the same name and argument syntax.

• You can write your own methods, as M-files, to operate on the objects in the
Database Toolbox. For more information, see “MATLAB Classes and
Objects.”

3 Tutorial for Functions

3-6

Importing Data into MATLAB from a Database
In this part of the tutorial, you connect to and import data from a database.
Specifically, you connect to the SampleDB data source, and then import country
data from the customers table in the Northwind sample database. You use
these Database Toolbox functions:

• database
• exec
• fetch
• logintimeout
• ping

If you want to see or copy the functions for this part of the tutorial, or if you
want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbimportdemo.m.

1 If you did not already do so, set up the data source SampleDB according to the
directions in “Setting Up a Data Source”.

2 In MATLAB, set the maximum time, in seconds, you want to allow the
MATLAB session to try to connect to a database. This prevents the
MATLAB session from hanging up if a database connection fails.

Enter the function before you connect to a database.

Type

logintimeout(5)

to specify the maximum allowable connection time as 5 seconds. If you are
using a JDBC connection, the function syntax is different – for more
information, see logintimeout.

MATLAB returns

ans=
 5

When you use the database function in the next step to connect to the
database, MATLAB tries to make the connection. If it cannot connect in 5
seconds, it stops trying.

Importing Data into MATLAB from a Database

3-7

3 Connect to the database – type

conn = database('SampleDB', '', '')

In this example, you define a MATLAB variable, conn, to be the returned
connection object. This connection stays open until you close it with the
close function.

For the database function, you provide the name of the database, which is
the data source SampleDB for this example. The other two arguments for the
database function are username and password. For this example, they are
empty strings because the SampleDB database does not require a username
or password.

If you are using a JDBC connection, the database function syntax is
different. For more information, see the database reference page.

For a valid connection, MATLAB returns information about the connection
object.

conn =

 Instance: 'SampleDB'
 UserName: ''
 Driver: []
 URL: []
 Constructor:[1x1

 com.mathworks.toolbox.database.databaseConnect]
 Message: []
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
 TimeOut: 5
 AutoCommit: 'on'
 Type: 'Database Object'

4 Check the connection status – type

ping(conn)

MATLAB returns status information about the connection, indicating that
the connection was successful.

DatabaseProductName: 'ACCESS'

3 Tutorial for Functions

3-8

 DatabaseProductVersion: '3.50.0000'
 JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'
 JDBCDriverVersion: '1.1001 (04.00.4202)'
 MaxDatabaseConnections: 64
 CurrentUserName: 'admin'
 DatabaseURL: 'jdbc:odbc:SampleDB'
 AutoCommitTransactions: 'True'

5 Open a cursor and execute an SQL statement – type

curs = exec(conn, 'select country from customers')

In the exec function, conn is the name of the connection object. The second
argument, select country from customers, is a valid SQL statement that
selects the country column of data from the customers table.

The exec command returns a cursor object. In this example, you assign the
MATLAB variable curs to the returned cursor object.

curs =
Attributes: []

 Data: 0
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select country from customers'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: 0

The data in the cursor object is stored in a MATLAB cell array. Cell arrays
support mixed data types.

Importing Data into MATLAB from a Database

3-9

6 Import data into MATLAB – type

curs = fetch(curs, 10)

fetch is the function that imports data. It has the following two arguments
in this example:

- curs, the cursor object returned by exec.

- 10, the maximum number of rows you want to be returned by fetch. The
RowLimit argument is optional. If RowLimit is omitted, MATLAB imports
all remaining rows.

In this example, fetch reassigns the variable curs to the cursor object
containing the rows of data returned by fetch. MATLAB returns
information about the cursor object.

curs =
Attributes: []

 Data: {10x1 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select country from customers'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: [1x1

 com.mathworks.toolbox.database.fetchTheData]

The curs object contains an element, Data, that points to the rows of data in
the array. You can tell that Data contains 10 rows and 1 column.

3 Tutorial for Functions

3-10

7 Display the Data element in the cursor object, curs. Assign the variable AA
to the data element, curs.Data. Type.

AA = curs.Data

MATLAB returns

AA =
 'Germany'
 'Mexico'
 'Mexico'
 'UK'
 'Sweden'
 'Germany'
 'France'
 'Spain'
 'France'
 'Canada'

For more information about working with data in MATLAB cell arrays, see
“Working with Cell Arrays in MATLAB” on page 3-36.

8 At this point, you can go to the next part of the tutorial. If you want to stop
working on the tutorial now and resume with the next part at a later time,
close the cursor and the connection. Type:

close(curs)
close(conn)

Viewing Information About the Imported Data

3-11

Viewing Information About the Imported Data
In this part of the tutorial, you view information about the data you imported
and close the connection. You use these Database Toolbox functions:

• attr
• close
• cols
• columnnames
• rows
• width

If you want to see or copy the functions for this part of the tutorial, or if you
want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinfodemo.m.

1 If you are continuing directly from the previous part of the tutorial, skip this
step. Otherwise, if the cursor and connection are not open, type the following
to continue with this tutorial.

conn = database('SampleDB', '', '');
curs = exec(conn, 'select country from customers');
curs = fetch(curs, 10);

2 View the number of rows in the data set you imported – type

numrows = rows(curs)

MATLAB returns

numrows =
 10

rows returns the number of rows in the data set, which is 10 in this example.

3 Tutorial for Functions

3-12

3 View the number of columns in the data set – type

numcols = cols(curs)

MATLAB returns

numcols =
 1

cols returns the number of columns in the data set, which is one in this
example.

4 View the column names for the columns in the data set – type

colnames = columnnames(curs)

MATLAB returns

colnames =
'country'

columnnames returns the names of the columns in the data set. In this
example, there is only one column, and therefore only one column name,
'country', is returned.

5 View the width of the column (size of field) in the data set – type

colsize = width(curs, 1)

MATLAB returns

colsize =
 15

width returns the column width for the column number you specify. Here,
the width of column 1 is 15.

Viewing Information About the Imported Data

3-13

6 You can use a single function to view multiple attributes for a column – type

attributes = attr(curs)

MATLAB returns

attributes =
 fieldName: 'country'
 typeName: 'VARCHAR'
 typeValue: 12
 columnWidth: 15
 precision: []
 scale: []
 currency: 'false'
 readOnly: 'false'
 nullable: 'true'
 Message: []

Note that if you had imported multiple columns, you could include a colnum
argument to specify the number of the column for which you want the
information.

7 Close the cursor – type

close(curs)

Always close a cursor when you are finished with it to avoid using memory
unnecessarily and to ensure there are enough available cursors for other
users.

8 At this point, you can go to the next part of the tutorial. If you want to stop
working on the tutorial now and resume with the next part at a later time,
close the connection. Type

close(conn)

3 Tutorial for Functions

3-14

Exporting Data from MATLAB to a New Record in a
Database

In this part of the tutorial, you retrieve a set of data, perform a simple
calculation on the data using MATLAB, and export the results as a new record
to another table in the database. Specifically, you retrieve freight costs from an
orders table, calculate the average freight cost, put the data into a cell array to
export it, and then export the data (the average freight value and the number
of shipments on which the average was based) to an empty table.

You use these Database Toolbox functions:

• get
• insert

If you want to see or copy the functions for this part of the tutorial, or if you
want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinsertdemo.m.

1 Create a table in Microsoft Access into which you will export MATLAB
results.

a Check the properties of the Northwind database to be sure it is writable,
that is, not read-only.

b Open the Northwind database in Microsoft Access.

c Create a new table called Avg_Freight_Cost that has two columns,
Calc_Date and Avg_Cost.

Exporting Data from MATLAB to a New Record in a Database

3-15

d For the Calc_Date field, use the default Data Type, which is Text, and
for the Avg_Cost field, set the Data Type to Number.

e Close the table. Access warns you that there is no primary key, but you
do not need one.

If you need more information about how to create a table in Access, see
Microsoft Access help or written documentation.

Note Although Access supports the use of spaces in table and column
names, most other databases do not. Therefore the Database Toolbox does not
allow spaces in table and column names so do not include them. Also, be sure
not to name columns using the database’s reserved words, such as DATE, or
you will not be able to import data into the database. For Access, see Access
help to determine the reserved words.

2 If you are continuing directly from the previous part of the tutorial, skip this
step. Otherwise, connect to the data source, SampleDB. Type

conn = database('SampleDB', '', '');

3 Tutorial for Functions

3-16

3 In MATLAB, import the data on which you will perform calculations.
Specifically, import the freight column of data from the orders table. To
keep the example simple, import only three rows of data. Type

curs = exec(conn, 'select freight from orders');
curs = fetch(curs, 3);

4 View the data you imported – type

AA = curs.Data

MATLAB returns

AA =
 [12.7500]
 [10.1900]
 [52.8400]

5 Calculate the average freight cost. First, assign the variable name numrows
to the number of rows in the array. Then convert the cell array AA to a vector
and calculate the average, assigning the result to the variable meanA. Divide
the sum by numrows, but note that you must convert numrows to a double
precision value because the divide operator, /, requires it. Type

numrows = rows(curs);
meanA = sum([AA{:}])/double(numrows)

MATLAB returns

meanA =
 25.2600

6 Assign the variable D to the date on which these orders were shipped – type

D = '1/20/98';

Exporting Data from MATLAB to a New Record in a Database

3-17

7 Assign the date and mean to a cell array, which will be exported to the
database. Put the date in the first cell by typing

exdata(1,1) = {D}

MATLAB returns

exdata =
'1/20/98'

Put the mean in the second cell by typing

exdata(1,2) = {meanA}

MATLAB returns

exdata =
 '1/20/98' [25.2600]

8 Define the names of the columns to which you will be exporting data. In this
example, the columns names are those in the Avg_Freight_Cost table you
created earlier, Calc_Date and Avg_Cost. Assign the variable colnames to
the cell array containing the column names. Type

colnames = {'Calc_Date','Avg_Cost'};

9 Before you export data from MATLAB, determine the current status of the
AutoCommit flag for the database. The status of the AutoCommit flag
determines if the database data will be automatically committed or not. If
the flag is off, you can undo an update.

Verify the status of the AutoCommit flag using the get function – type

get(conn, 'AutoCommit')

MATLAB returns

ans =
on

The AutoCommit flag is set to on so exported data will be automatically
committed. In this example, keep the AutoCommit flag on; for a Microsoft
Access database, this is the only option.

3 Tutorial for Functions

3-18

10 Export the data into the Avg_Freight_Cost table. For this example, type

insert(conn, 'Avg_Freight_Cost', colnames, exdata)

where conn is the connection object for the database to which you are
exporting data. In this example, conn is SampleDB, which is already open.
However, if you export to a different database that is not open, use the
database function to connect to it before exporting the data.

Avg_Freight_Cost is the name of the table to which you are exporting data.
In the insert function, you also include the colnames cell array and the cell
array containing the data you are exporting, exdata, both of which you
defined in the previous steps.

Running insert appends the data as a new record at the end of the
Avg_Freight_Cost table.

If you get the following error, it is because the table is open in design mode
in Access. Close the table in Access and repeat the insert function.

??? Error using ==> cursor/cursor
[Microsoft][ODBC Microsoft 7.0 Driver] Table
'Avg_Freight_Cost' is exclusively locked by user '' on machine ''

11 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

Note that the Avg_Cost value was rounded to a whole number to match the
properties of that field in Access.

Exporting Data from MATLAB to a New Record in a Database

3-19

12 Close the cursor – type

close(curs)

Always close a cursor when you are finished with it to avoid using memory
unnecessarily and to ensure there are enough available cursors for other
users.

13 At this point, you can go to the next part of the tutorial. If you want to stop
working on the tutorial now and resume with the next part at a later time,
close the connection. Type

close(conn)

Do not delete or change the Avg_Freight_Cost table in Access because you
will use it in the next part of the tutorial.

3 Tutorial for Functions

3-20

Exporting Data from MATLAB, Replacing Existing Data in a
Database

In this part of the tutorial, you export data from MATLAB to a database,
updating existing data in the database. Specifically, you update the data you
previously imported into the Avg_Freight_Cost table.

You use these Database Toolbox functions:

• close
• update

If you want to see or copy the functions for this part of the tutorial, or if you
want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbupdatedemo.m.

1 If you are continuing directly from the previous part of the tutorial, skip this
step. Otherwise, type the following

conn = database('SampleDB', '', '');
colnames = {'Calc_Date', 'Avg_Cost'};
D = '1/20/98';
meanA = 25.2600;
exdata = {D, meanA}

MATLAB returns

exdata =
 '1/20/98' [25.2600]

2 Assume that the date in the Avg_Freight_Cost table is incorrect and
instead should be 1/19/98. Type

D = '1/19/98'

3 Assign the new date value to the cell array, exdata, which contains the data
you will export. Type

exdata(1,1) = {D}

MATLAB returns

exdata =
 '1/19/98' [25.2600]

Exporting Data from MATLAB, Replacing Existing Data in a Database

3-21

4 Identify the record to be updated in the database. To do so, define an SQL
where statement and assign it to the variable whereclause. The record to be
updated is the record that has 1/20/98 for the Calc_Date.

whereclause = 'where Calc_Date = ''1/20/98'''

Because the date string is within a string, two single quotation marks
surround the date instead of the usual single quotation mark. MATLAB
returns

whereclause =
where Calc_Date = '1/20/98'

5 Export the data, replacing the record whose Calc_Date is 1/20/98.

update(conn, 'Avg_Freight_Cost', colnames, exdata, whereclause)

6 In Microsoft Access, view the Avg_Freight_Cost table to verify the results.

7 Disconnect from the database.

close(conn)

Always close a connection when you are finished with it to avoid using
memory unnecessarily and to ensure there are enough available connections
for other users.

3 Tutorial for Functions

3-22

Exporting Multiple Records from MATLAB
In this example, multiple records are imported, manipulated in MATLAB, and
then exported to a database. Specifically, you import sales figures for all
products, by month, into MATLAB. Then you compute the total sales for each
month. Finally, you export the monthly totals to a new table.

You use these Database Toolbox functions:

• insert
• setdbprefs

If you want to see or copy the functions for this part of the tutorial, or if you
want to run the set of functions, use the M-file
matlab\toolbox\database\dbdemos\dbinsert2demo.m.

1 If you did not already do so, set up the data source dbtoolboxdemo according
to the directions in “Setting Up a Data Source”. This data source uses the
tutorial database.

2 Check the properties of the tutorial database to be sure it is writable, that
is, not read-only.

3 Connect to the database – type

conn = database('dbtoolboxdemo', '', '');

You define the returned connection object as conn. You do not need a
username or password to access the dbtoolboxdemo database.

4 Specify that any NULL value read from the database will be converted to a 0
in MATLAB by using the setdbprefs command.

setdbprefs ('NullNumberRead','0')

5 Import the sales figures. Specifically, import all data from the salesVolume
table. Type

curs = exec(conn, 'select * from salesVolume');
curs = fetch(curs);

Exporting Multiple Records from MATLAB

3-23

6 To get a sense of the data you imported, view the column names in the
fetched data set – type

columnnames(curs)

MATLAB returns

ans =
'Stock Number', 'January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October',
'November', 'December'

7 To get a sense of what the data is, view the data for January, which is in
column 2 – type

curs.Data(:,2)

MATLAB returns

ans =
 [1400]
 [2400]
 [1800]
 [3000]
 [4300]
 [5000]
 [1200]
 [3000]
 [3000]
 [0]

8 Get the size of the cell array containing the fetched data set, assigning the
dimensions to m and n. In a later step, you use these values to compute the
monthly totals. Type

[m,n] = size(curs.Data)

MATLAB returns

m =
 10
n =
 13

3 Tutorial for Functions

3-24

9 Compute the monthly totals – type

for i = 2:n
tmp = curs.Data(:,i)
monthly(i-1,1) = sum([tmp{:}]);

end

where tmp is the sales volume for all products in a given month i, and
monthly is the total sales volume of all products for the month i. To compute
monthly using sum, first convert tmp from a cell array to a numeric array
using [tmp{:}] because sum will only work on numeric arrays.

For example, when i is 2, row 1 of monthly is the total of all rows in column
2 of curs.Data, where column 2 is the sales volume for January.

To see the result, type

monthly

MATLAB returns

 25100
 15621
 14606
 11944
 9965
 8643
 6525
 5899
 8632
 13170
 48345
 172000

10 To export the column of data, you must first convert it to a cell array – type

exdata = num2cell(monthly);

num2cell takes the data in monthly and assigns each row to a row in a new
cell array, exdata, which you will export in a later step.

Exporting Multiple Records from MATLAB

3-25

11 Create a string array containing the column names into which you are
inserting the data. In a later step, we will insert the data into the
salesTotal column of the yearlySales table; here we assign the variable
colnames to the array. Type

colnames{1,1} = 'salesTotal';

12 Insert the data into the yearlySales table – type

insert(conn, 'yearlySales', colnames, exdata)

13 View the yearlySales table in the tutorial database to be sure the data
was imported correctly.

14 Close the cursor and database connection. Type

close(curs)
close(conn)

3 Tutorial for Functions

3-26

Accessing Metadata
In this part of the tutorial, you access information about the database; this
information is called the metadata. You use these Database Toolbox functions:

• dmd
• get
• supports
• tables

1 Connect to the dbtoolboxdemo data source. Type

conn = database('dbtoolboxdemo', '', '')

MATLAB returns information about the database object.

conn =
Instance: 'dbtoolboxdemo'

 UserName: ''
 Driver: []
 URL: []
 Constructor: [1x1

 com.mathworks.toolbox.database.databaseConnect]
 Message: []
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
 TimeOut: 0
 AutoCommit: 'on'
 Type: 'Database Object'

2 To view additional information about the database, you first construct a
database metadata object using the dmd function. Type

dbmeta = dmd(conn)

MATLAB returns the handle (identifier) for the metadata object.

dbmeta =
DMDHandle: [1x1 sun.jdbc.odbc.JdbcOdbcDatabaseMetaData]

Accessing Metadata

3-27

3 To view a list of properties associated with the database, use the get
command for the metadata object you just created, dbmeta.

v = get(dbmeta)

MATLAB returns a long list of properties associated with the database.

v =
AllProceduresAreCallable: 1

 AllTablesAreSelectable: 1
 DataDefinitionCausesTransaction: 1
 DataDefinitionIgnoredInTransact: 0
 DoesMaxRowSizeIncludeBlobs: 0
 Catalogs: {[1x46 char]}
 CatalogSeparator: '.'
 CatalogTerm: 'DATABASE'
 DatabaseProductName: 'ACCESS'
 DatabaseProductVersion: '03.50.00'
 DefaultTransactionIsolation: 2
 DriverMajorVersion: 1
 DriverMinorVersion: 1001

 DriverName: 'JDBC-ODBC Bridge
 (odbcjt32.dll)'

 DriverVersion: '1.1001 (04.00.4202)'
 ExtraNameCharacters: '~@#$%^&*_-+=\}{"';:?/><,'
 IdentifierQuoteString: '`'
 IsCatalogAtStart: 1
 MaxBinaryLiteralLength: 255
 MaxCatalogNameLength: 260
 MaxCharLiteralLength: 255
 MaxColumnNameLength: 64
 MaxColumnsInGroupBy: 10
 MaxColumnsInIndex: 10
 MaxColumnsInOrderBy: 10
 MaxColumnsInSelect: 255
 MaxColumnsInTable: 255
 MaxConnections: 64
 MaxCursorNameLength: 64
 MaxIndexLength: 255
 MaxProcedureNameLength: 64
 MaxRowSize: 2096

3 Tutorial for Functions

3-28

 MaxSchemaNameLength: 0
 MaxStatementLength: 65000
 MaxStatements: 0
 MaxTableNameLength: 64
 MaxTablesInSelect: 16
 MaxUserNameLength: 0
 NumericFunctions: [1x73 char]
 ProcedureTerm: 'QUERY'
 Schemas: {}
 SchemaTerm: ''
 SearchStringEscape: '\'
 SQLKeywords: [1x461 char]
 StringFunctions: [1x91 char]
 StoresLowerCaseIdentifiers: 0
 StoresLowerCaseQuotedIdentifier: 0
 StoresMixedCaseIdentifiers: 0
 StoresMixedCaseQuotedIdentifier: 1
 StoresUpperCaseIdentifiers: 0
 StoresUpperCaseQuotedIdentifier: 0
 SystemFunctions: ''
 TableTypes: {4x1 cell}
 TimeDateFunctions: [1x111 char]
 TypeInfo: {16x1 cell}
 URL: 'jdbc:odbc:dbtoolboxdemo'
 UserName: 'admin'
 NullPlusNonNullIsNull: 0
 NullsAreSortedAtEnd: 0
 NullsAreSortedAtStart: 0
 NullsAreSortedHigh: 0
 NullsAreSortedLow: 1
 UsesLocalFilePerTable: 0
 UsesLocalFiles: 1

You can see much of the information in the list directly, for example, the
UserName, which is 'admin'.

Accessing Metadata

3-29

4 Some information is too long to fit in the field’s display area and instead the
size of the information in the field is reported. For example, the Catalogs
element is shown as {[1x46 char]}. To view the actual Catalog
information, type

v.Catalogs

MATLAB returns

ans =
'D:\matlabr12\toolbox\database\dbdemos\tutorial'

For more information about the database metadata properties returned by
get, see the methods of the DatabaseMetaData object at
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html.

5 To see the properties that this database supports, use the supports
function. Type

a = supports(dbmeta)

MATLAB returns

a =
 AlterTableWithAddColumn: 1

 AlterTableWithDropColumn: 1
 ANSI92EntryLevelSQL: 1
 ANSI92FullSQL: 0
 ANSI92IntermediateSQL: 0
 CatalogsInDataManipulation: 1
 CatalogsInIndexDefinitions: 1
 CatalogsInPrivilegeDefinitions: 0
 CatalogsInProcedureCalls: 0
 CatalogsInTableDefinitions: 1
 ColumnAliasing: 1
 Convert: 1
 CoreSQLGrammar: 0
 CorrelatedSubqueries: 1
 DataDefinitionAndDataManipulati: 1
 DataManipulationTransactionsOnl: 0
 DifferentTableCorrelationNames: 0

3 Tutorial for Functions

3-30

 ExpressionsInOrderBy: 1
 ExtendedSQLGrammar: 0
 FullOuterJoins: 0
 GroupBy: 1
 GroupByBeyondSelect: 1
 GroupByUnrelated: 0
 IntegrityEnhancementFacility: 0
 LikeEscapeClause: 0
 LimitedOuterJoins: 0
 MinimumSQLGrammar: 1
 MixedCaseIdentifiers: 0
 MixedCaseQuotedIdentifiers: 1
 MultipleResultSets: 0
 MultipleTransactions: 1
 NonNullableColumns: 0
 OpenCursorsAcrossCommit: 0
 OpenCursorsAcrossRollback: 0
 OpenStatementsAcrossCommit: 1
 OpenStatementsAcrossRollback: 1
 OrderByUnrelated: 0
 OuterJoins: 1
 PositionedDelete: 0
 PositionedUpdate: 0
 SchemasInDataManipulation: 0
 SchemasInIndexDefinitions: 0
 SchemasInPrivilegeDefinitions: 0
 SchemasInProcedureCalls: 0
 SchemasInTableDefinitions: 0
 SelectForUpdate: 0
 StoredProcedures: 1
 SubqueriesInComparisons: 1
 SubqueriesInExists: 1
 SubqueriesInIns: 1
 SubqueriesInQuantifieds: 1

Accessing Metadata

3-31

 TableCorrelationNames: 1
 Transactions: 1
 Union: 1
 UnionAll: 1

A 1 means the database supports that property, while a 0 means the
database does not support that property. For the above example, the
GroupBy property has a value of 1, meaning the database supports the SQL
group by feature.

For more information about the properties supported by the database, see
the methods of the DatabaseMetaData object at
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html.

6 There are a number of Database Toolbox functions you can use to access
additional database metadata. For example, to retrieve the names of the
tables in a catalog in the database, use the tables function. Type

t = tables(dbmeta, 'tutorial')

where dbmeta is the name of the database metadata object you created for
the database using dmd in step 2, and tutorial is the name of the catalog for
which you want to retrieve table names. (You retrieved catalog names in
step 4.)

MATLAB returns the names and types for each table.

t =
 'MSysACEs' 'SYSTEM TABLE'

 'MSysIMEXColumns' 'SYSTEM TABLE'
 'MSysIMEXSpecs' 'SYSTEM TABLE'
 'MSysModules' 'SYSTEM TABLE'

 'MSysModules2' 'SYSTEM TABLE'
 'MSysObjects' 'SYSTEM TABLE'
 'MSysQueries' 'SYSTEM TABLE'
 'MSysRelationships' 'SYSTEM TABLE'
 'inventoryTable' 'TABLE'
 'productTable' 'TABLE'
 'salesVolume' 'TABLE'
 'suppliers' 'TABLE'

3 Tutorial for Functions

3-32

 'yearlySales' 'TABLE'
 'display' 'VIEW'

Two of these tables were used in the previous example: salesVolume and
yearlySales.

For a list of other Database Toolbox functions you can perform for the
database metadata object, type

help dmd/Contents

Some databases do not support all of these functions.

7 Close the database connection. Type

close(conn)

Resultset Metadata Object
Similar to the dmd function are the resultset and rsmd functions. Use
resultset to create a resultset object for a cursor object that you created using
exec or fetch. You can then get properties of the resultset object, create a
resultset metadata object using rsmd and get its properties, or make calls to the
resultset object using your own Java-based applications.

Performing Driver Functions

3-33

Performing Driver Functions
This part of the tutorial demonstrates how to create database driver and
drivermanager objects so that you can get and set the object properties. You use
these Database Toolbox functions:

• drivermanager
• driver
• get
• isdriver
• set

There is no equivalent M-file demo to run because the tutorial uses a PC and
relies on a specific JDBC connection and database; your configuration will be
different.

1 Use the driver function to construct a driver object for a specified database
URL string of the form jdbc:<subprotocol>:<subname>. For example, type

d = driver('jdbc:oracle:thin:@144.212.33.228:1521:')

MATLAB returns the handle (identifier) for the driver object.

d =
DriverHandle: [1x1 oracle.jdbc.driver.OracleDriver]

2 To get properties of the driver object, type

v = get(d)

MATLAB returns information about the driver’s versions.

v =
MajorVersion: 1
MinorVersion: 0

3 To determine if d is a valid JDBC driver object, type

isdriver(d)

3 Tutorial for Functions

3-34

MATLAB returns

ans =
1

which means d is a valid JDBC driver object. Otherwise, MATLAB would
have returned a 0.

4 To set and get properties for all drivers, first create a drivermanager object
using the drivermanager function. Type

dm = drivermanager

dm is the drivermanager object.

5 Get properties of the drivermanager object. Type

v = get(dm)

MATLAB returns

v =
 Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@76163'}

 LoginTimeout: 0
 LogStream: []

6 To set the LoginTimeout value to 10 for all drivers loaded during this
session, type

set(dm,'LoginTimeout',10)

Verify the value by typing

v = get(dm)

MATLAB returns

v =
 Drivers: {'sun.jdbc.odbc.JdbcOdbcDriver@761630'}

 LoginTimeout: 10
 LogStream: []

Performing Driver Functions

3-35

If you now connect to a database, the LoginTimeout value will be 10. For
example, type

conn = database('SampleDB','','')

MATLAB returns

conn =
Instance: 'SampleDB'

 UserName: ''
 Driver: []

 URL: []
 Constructor: [1x1

 com.mathworks.toolbox.database.databaseConnect]
 Message: []
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
 TimeOut: 10
 AutoCommit: 'on'
 Type: 'Database Object'

For a list of all the driver object functions you can perform, type

help driver/Contents

3 Tutorial for Functions

3-36

Working with Cell Arrays in MATLAB
When you import data from a database into MATLAB, the data is stored in
MATLAB cell arrays. You can then use MATLAB functions to work with the
data. This section provides a few simple examples of how to work with cell
arrays in MATLAB.

• “Viewing Query Results” on page 3-36

• “Retrieving Elements of Query Results” on page 3-38

• “Performing Functions on Cell Arrays” on page 3-39

• “Creating Cell Arrays for Exporting Data from MATLAB” on page 3-40

For more information on using cell arrays, see Chapter 13 of Using MATLAB.

Viewing Query Results
How you view query results depends on if you imported the data using the
fetch function or if you used the Visual Query Builder.

Importing Data Using the fetch Function
If you import data from a database to MATLAB using the fetch function,
MATLAB returns, for example

curs =
Attributes: []

 Data: {3x1 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select freight from orders'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: [1x1

 com.mathworks.toolbox.database.fetchTheData]

To view the retrieved data and assign it to the workspace variable A, type

A = curs.Data

Working with Cell Arrays in MATLAB

3-37

For this example, MATLAB returns

A =
 [12.7500]
 [10.1900]
 [52.8400]

If the query results consist of multiple columns, you can view all the results for
a single column using a colon (:). For example, if running a fetch returns data
with multiple columns, you view the results of column 2 by typing

curs.data(:,2)

MATLAB returns the data in column 2

ans =
 [1400]
 [2400]
 [1800]
 [3000]
 [4300]
 [5000]
 [1200]
 [3000]
 [3000]
 [0]

Importing Data Using the Visual Query Builder
If you use the Visual Query Builder to import data, you assign the workspace
variable, in this example A, using the Visual Query Builder and do not have to
perform the above steps. Instead, just type the workspace variable name at the
MATLAB prompt in the Command Window. For this example, type

A

MATLAB returns

A =
 [12.7500]
 [10.1900]
 [52.8400]

3 Tutorial for Functions

3-38

Viewing Results Shown as a Matrix
If the results do not fit in the limited display space available, MATLAB
expresses them as an array. If for example, MATLAB returns these query
results.

B =
 [122] 'Virgina Power'

 [123] 'North Land Trading'
 [124] [1x20 char]
 [125] 'Bush Pro Shop'

you can see the data in rows 1, 2, and 4, but the second column in row 3 is
expressed as an array because the results are too long to display.

To view the contents of the second column in the third row, type

B(3,2)

MATLAB returns

ans =
'The Ristuccia Center'

Retrieving Elements of Query Results
For the example used in this section, the query results are assigned to the
workspace variable A.

A =
 [12.7500]
 [10.1900]
 [52.8400]

Retrieving a Single Element
To retrieve a single element from A, enclose the element’s row and column
numbers in curly braces. For example, to retrieve the first element, type

A1 = A{1}

MATLAB returns

A1 = 12.75

Working with Cell Arrays in MATLAB

3-39

Retrieving an Entire Column or Row
To retrieve the data in an entire column or row, use colons within the curly
braces. You then assign the results to a numeric array by enclosing them in
square brackets. For example, type

AA=[A{:}]

MATLAB returns

AA =
12.7500 10.1900 52.8400

You can also retrieve the contents using the celldisp function. For example,
type

celldisp(A)

MATLAB returns

A{1} =
12.7500

A{2} =
10.1900

A{3} =
52.8400

Performing Functions on Cell Arrays
To perform MATLAB functions directly on cell arrays, you need to extract the
contents of the cell array by enclosing the elements in curly braces. For
example, to compute the sum of the elements in the cell array A, type

sum([A{:}])

Because sum only works on numeric arrays, you convert the contents of A{:} to
a numeric array by enclosing it in square brackets.

3 Tutorial for Functions

3-40

Getting the Size of an Array
If you want to perform functions that use the number of rows or columns in the
query results, use the size function to get the information. In this example, get
the size of workspace variable A, which contains the query results, and assign
the number of rows and columns in A to m and n respectively. Type

[m,n] = size(A)

m =
 10
n =
 13

Creating Cell Arrays for Exporting Data from
MATLAB
To export data from MATLAB to a database (using the insert or update
functions) you need to put the data in a cell array.

Enclosing Data in Curly Braces
One way to put data in a cell array is by enclosing the data in curly braces, with
rows separated by semicolons and elements within a row separated by commas.
For example, to insert the two rows of data A and avgA, and B and avgB, use the
insert function as follows.

insert(conn, 'Growth', colnames, {A, avgA; B, avgB})

Assigning Cell Array Elements
Put data into a cell array element by enclosing it in curly braces. For example,
if you have one row containing two values you want to export, A and meanA, put
them in cell array exdata, which you will export, by typing

exdata(1,1) = {A};
exdata(1,2) = {meanA};

To export the data exdata, use the insert function as follows.

insert(conn, 'Growth', colnames, exdata)

Working with Cell Arrays in MATLAB

3-41

Converting a Numeric Array to a Cell Array
To export an entire numeric array to a cell array, use the num2cell function.
For example, to convert the numeric array monthly to a cell array exdata, type

exdata = num2cell(monthly);

num2cell takes the data in monthly and assigns each row to a row in a new cell
array, exdata, which you can then export to your database.

3 Tutorial for Functions

3-42

4

Function Reference

Functions by Category 4-2

Alphabetical List of Functions 4-8

4 Function Reference

4-2

Functions by Category
The following tables group Database Toolbox functions by category.

• “General” on page 4-2

• “Database Connection” on page 4-3

• “SQL Cursor” on page 4-3

• “Importing Data into MATLAB from a Database” on page 4-4

• “Exporting Data from MATLAB to a Database” on page 4-4

• “Database Metadata Object” on page 4-5

• “Driver Object” on page 4-6

• “Drivermanager Object” on page 4-6

• “Resultset Object” on page 4-7

• “Resultset Metadata Object” on page 4-7

• “Visual Query Builder” on page 4-7

General

Function Purpose

logintimeout Set or get time allowed to establish database
connection.

setdbprefs Set preferences for database actions for handling
NULL values.

Functions by Category

4-3

Database Connection

SQL Cursor

Function Purpose

clearwarnings Clear warnings for database connection.

close Close database connection.

database Connect to database.

get Get property of database connection.

isconnection Detect if database connection is valid.

isreadonly Detect if database connection is read-only.

ping Get status information about database connection.

set Set properties for database connection.

sql2native Convert JDBC SQL grammar to system’s native
SQL grammar.

Function Purpose

close Close cursor.

exec Execute SQL statement and open cursor.

get Get property of cursor object.

querytimeout Get time allowed for a database SQL query to
succeed.

set Set RowLimit for cursor fetch.

4 Function Reference

4-4

Importing Data into MATLAB from a Database

Exporting Data from MATLAB to a Database

Function Purpose

attr Get attributes of columns in fetched data set.

cols Get number of columns in fetched data set.

columnnames Get names of columns in fetched data set.

fetch Import data into MATLAB cell array.

rows Get number of rows in fetched data set.

width Get field size of column in fetched data set.

Function Purpose

commit Make database changes permanent.

insert Export MATLAB cell array data into database table.

rollback Undo database changes.

update Replace data in database table with data from
MATLAB cell array.

Functions by Category

4-5

Database Metadata Object

Function Purpose

bestrowid Get database table unique row identifier.

columnprivileges Get database column privileges.

columns Get database table column names.

crossreference Get information about primary and foreign keys.

dmd Construct database metadata object.

exportedkeys Get information about exported foreign keys.

get Get database metadata properties.

importedkeys Get information about imported foreign keys.

indexinfo Get indices and statistics for database table.

primarykeys Get primary key information for database table or
schema.

procedurecolumns Get catalog’s stored procedure parameters and
result columns.

procedures Get catalog’s stored procedures.

supports Detect if property is supported by database
metadata object.

tableprivileges Get database table privileges.

tables Get database table names.

versioncolumns Get automatically updated table columns.

4 Function Reference

4-6

Driver Object

Drivermanager Object

Function Purpose

driver Construct database driver object.

get Get database driver properties.

isdriver Detect if driver is a valid JDBC driver object.

isjdbc Detect if driver is JDBC-compliant.

isurl Detect if the database URL is valid.

register Load database driver.

unregister Unload database driver.

Function Purpose

drivermanager Construct database drivermanager object.

get Get database drivermanager properties.

set Set database drivermanager properties.

Functions by Category

4-7

Resultset Object

Resultset Metadata Object

Visual Query Builder

Function Purpose

clearwarnings Clear the warnings for the resultset.

close Close resultset object.

get Get resultset properties.

isnullcolumn Detect if last record read in resultset was NULL.

namecolumn Map resultset column name to resultset column
index.

resultset Construct resultset object.

Function Purpose

get Get resultset metadata properties.

rsmd Construct resultset metadata object.

Function Purpose

confds Configure data source for use with Visual Query
Builder (JDBC only).

querybuilder Start visual SQL query builder.

4 Function Reference

4-8

Alphabetical List of Functions
This section contains detailed descriptions of all Database Toolbox functions.
You can also access this information through the doc function, or the Help
browser feature for searching by function name.

attr

4-9

4attrPurpose Get attributes of columns in fetched data set

Syntax attributes = attr(curs, colnum)
attributes = attr(curs)

Description attributes = attr(curs, colnum) retrieves attribute information for the
specified column number colnum, in the fetched data set curs.

attributes = attr(curs) retrieves attribute information for all columns in
the fetched data set curs, and stores it in a cell array. Use
attributes(colnum) to display the attributes for column colnum.

The returned attributes are listed in the following table.

Attribute Description

fieldName Name of the column

typeName Data type

typeValue Numerical representation of the data type

columnWidth Size of the field

precision Precision value for floating and double data types;
an empty value is returned for strings

scale Precision value for real and numeric data types; an
empty value is returned for strings

currency If true, data format is currency

readOnly If true, the data cannot be overwritten

nullable If true, the data can be NULL

Message Error message returned by fetch

attr

4-10

Examples Example 1 – Get Attributes for One Column
Get the column attributes for the fourth column of a fetched data set.

attr(curs, 4)

ans =
 fieldName: 'Age'
 typeName: 'LONG'
 typeValue: 4
 columnWidth: 11
 precision: []
 scale: []
 currency: 'false'
 readOnly: 'false'
 nullable: 'true'
 Message: []

Example 2 – Get Attributes for All Columns
Get the column attributes for curs, and assign them to attributes.

attributes = attr(curs)

View the attributes of column 4.

attributes(4)

MATLAB returns the attributes of column 4.

ans =
 fieldName: 'Age'
 typeName: 'LONG'
 typeValue: 4
 columnWidth: 11
 precision: []
 scale: []
 currency: 'false'
 readOnly: 'false'
 nullable: 'true'
 Message: []

See Also cols, columnnames, columns, dmd, fetch, get, tables, width

bestrowid

4-11

4bestrowidPurpose Get database table unique row identifier

Syntax b = bestrowid(dbmeta, 'cata', 'sch')
b = bestrowid(dbmeta, 'cata', 'sch', 'tab')

Description b = bestrowid(dbmeta, 'cata', 'sch') determines and returns the
optimal set of columns in a table that uniquely identifies a row, in the schema
sch, of the catalog cata, for the database whose database metadata object is
dbmeta, where dbmeta was created using dmd.

b = bestrowid(dbmeta, 'cata', 'sch', 'tab') determines and returns
the optimal set of columns that uniquely identifies a row in table tab, in the
schema sch, of the catalog cata, for the database whose database metadata
object is dbmeta, where dbmeta was created using dmd.

Examples Type

b = bestrowid(dbmeta,'msdb','geck','builds')

MATLAB returns

b =
 'build_id'

In this example:

• dbmeta is the database metadata object

• msdb is the catalog cata

• geck is the schema sch, is

• builds is the table tab

The results is build_id, which means that every entry in the build_id column
is unique and can be used to identify the row.

See Also columns, dmd, get, tables

clearwarnings

4-12

4clearwarningsPurpose Clear warnings for database connection or resultset

Syntax clearwarnings(conn)
clearwarnings(rset)

Description clearwarnings(conn) clears the warnings reported for the database
connection object conn, which was created using database.

clearwarnings(rset) clears the warnings reported for the resultset object
rset, which was created using resultset.

For command line help on clearwarnings, use the overloaded methods:

help database/clearwarnings
help resultset/clearwarnings

Examples clearwarnings(conn) NULLS reported warnings for the database connection
object conn, which was created using conn = database(...).

See Also database, get, resultset

close

4-13

4closePurpose Close database connection, cursor, or resultset object

Syntax close(object)

Description close(object) closes object, freeing up associated resources.

Following are the allowable objects for close.

Database connections, cursors, and resultsets remain open until you close
them using the close function. Always close a cursor, connection, or resultset
when you finish using it so that MATLAB stops reserving memory for it. Also,
most databases limit the number of cursors and connections that can be open
at one time.

If you terminate a MATLAB session while cursors and connections are open,
MATLAB closes them, but your database might not free up the connection or
cursor. Therefore, always close connections and cursors when you finish using
them.

Close a cursor before closing the connection used for that cursor.

For command line help on close, use the overloaded methods:

help database/close
help cursor/close
help resultset/close

Object Description Action Performed by
close(object)

conn Database connection object
created using database

closes conn

curs Cursor object created using exec
or fetch

closes curs

rset Resultset object defined using
resultset

closes rset

close

4-14

Examples To close the cursor curs and the connection conn, type

close(curs)
close(conn)

See Also database, exec, fetch, resultset

cols

4-15

4colsPurpose Get number of columns in fetched data set

Syntax numcols = cols(curs)

Description numcols = cols(curs) returns the number of columns in the fetched data set
curs.

Examples This example shows that there are three columns in the fetched data set, curs.

numcols = cols(curs)

numcols =
 3

See Also attr, columnnames, columnprivileges, columns, fetch, get, rows, width

columnnames

4-16

4columnnamesPurpose Get names of columns in fetched data set

Syntax colnames = columnnames(curs)

Description colnames = columnnames(curs) returns the column names in the fetched
data set curs. The column names are returned as a single string vector.

Examples The fetched data set curs, contains three columns having the names shown.

colnames = columnnames(curs)

colnames =
'Address', 'City', 'Country'

See Also attr, cols, columnprivileges, columns, fetch, get, width

columnprivileges

4-17

4columnprivilegesPurpose Get database column privileges

Syntax lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab')
lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l')

Description lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab') returns the list of
privileges for all columns in table tab, in the schema sch, of the catalog cata,
for the database whose database metadata object is dbmeta, where dbmeta was
created using dmd.

lp = columnprivileges(dbmeta, 'cata', 'sch', 'tab', 'l') returns the
list of privileges for column l, in the table tab, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta, where
dbmeta was created using dmd.

Examples Type

lp = columnprivileges(dbmeta,'msdb','geck','builds','build_id')

MATLAB returns

lp =
 'builds' 'build_id' {1x4 cell}

In this example:

• dbmeta is the database metadata object

• msdb is the catalog cata

• geck is the schema sch

• builds is the table tab

• build_id is the column name.

The results show:

• the table name, builds, in column 1

• the column name, build_id, in column 2

• the column privileges, lp, in column 3

columnprivileges

4-18

To view the contents of the 3rd column in lp, type

lp{1,3}

MATLAB returns the column privileges for the build_id column.

ans =
 'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

See Also cols, columns, columnnames, dmd, get

columns

4-19

4columnsPurpose Get database table column names

Syntax l = columns(dbmeta, 'cata')
l = columns(dbmeta, 'cata', 'sch')
l = columns(dbmeta, 'cata', 'sch', 'tab')

Description l = columns(dbmeta, 'cata') returns the list of all column names in the
catalog cata, for the database whose database metadata object is dbmeta,
where dbmeta was created using dmd.

l = columns(dbmeta, 'cata', 'sch') returns the list of all column names in
the schema sch, of the catalog cata, for the database whose database metadata
object is dbmeta, where dbmeta was created using dmd.

l = columns(dbmeta, 'cata', 'sch', 'tab') returns the list of columns for
the table tab, in the schema sch, of the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using dmd.

Examples Type

l = columns(dbmeta,'orcl', 'SCOTT')

MATLAB returns

l =
 'BONUS' {1x4 cell}
 'DEPT' {1x3 cell}
 'EMP' {1x8 cell}
 'SALGRADE' {1x3 cell}
 'TRIAL' {1x3 cell}

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

The results show the names of the five tables and a cell array containing the
column names in the tables.

columns

4-20

To see the column names for the BONUS table, type

l{1,2}

MATLAB returns

ans =
 'ENAME' 'JOB' 'SAL' 'COMM'

which are the column names in the BONUS table.

See Also attr, bestrowid, cols, columnnames, columnprivileges, dmd, get,
versioncolumns

commit

4-21

4commitPurpose Make database changes permanent

Syntax commit(conn)

Description commit(conn) makes permanent the changes made via insert or update to the
database connection conn. The commit function commits all changes made
since the last commit or rollback function was run, or the last exec function
that performed a commit or rollback. The AutoCommit flag for conn must be
off to use commit.

Examples Ensure the AutoCommit flag for connection conn is off by typing

get(conn,'AutoCommit')

MATLAB returns

ans =
off

Insert the data contained in exdata into the columns DEPTNO, DNAME, and LOC,
in the table DEPT for the data source conn. Type

insert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'}, exdata)

Commit the data inserted in the database by typing

commit(conn)

The data is added to the database.

See Also database, exec, get, insert, rollback, update

confds

4-22

4confdsPurpose Configure data source for use with Visual Query Builder (JDBC only)

Syntax confds

Description confds displays the Configure Data Source dialog box, from which you add
and remove data sources. Use confds if you connect to databases via JDBC
drivers and want to use the Visual Query Builder. To add and remove data
sources for connections that use ODBC drivers, see “Setting Up a Data Source”
in Chapter 1 of the Database Toolbox User’s Guide.

1 Complete the Name, Driver, and URL fields. For example:

Name: orcl

Driver: oracle.jdbc.driver.OracleDriver

URL: jdbc:oracle:thin:@144.212.33.130:1521:

2 Click Add to add the data source.

3 Click Test to establish a test connection to the data source. You are
prompted to supply a username and password if the database requires it.

4 Click OK to save the changes and close the Configure Data Source dialog
box.

To remove a data source, select it, click Remove, and click OK.

crossreference

4-23

4crossreferencePurpose Get information about primary and foreign keys

Syntax f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata', 'fsch',
'ftab')

Description f = crossreference(dbmeta, 'pcata', 'psch', 'ptab', 'fcata', 'fsch',
'ftab') returns information about the relationship between foreign keys and
primary keys. Specifically, the information is for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd. The primary
key information is for the table ptab, in the primary schema psch, of the
primary catalog pcata. The foreign key information is for the foreign table
ftab, in the foreign schema fsch, of the foreign catalog fcata.

Examples Type

f = crossreference(dbmeta,'orcl','SCOTT','DEPT',...
'orcl','SCOTT','EMP')

MATLAB returns

f =
Columns 1 through 7
 'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'
Columns 8 through 13
 'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object

• orcl is the catalog pcata and the catalog fcata

• SCOTT is the schema psch and the schema fsch

• DEPT is the table ptab that contains the referenced primary key

• EMP is the table ftab that contains the foreign key

crossreference

4-24

The results show the primary and foreign key information.

In the schema SCOTT, there is only one foreign key. The table DEPT contains a
primary key DEPTNO that is referenced by the field DEPTNO in the table EMP.
DEPTNO in the EMP table is a foreign key.

Column Description Value

1 Catalog containing primary key, referenced by
foreign imported key

orcl

2 Schema containing primary key, referenced by
foreign imported key

SCOTT

3 Table containing primary key, referenced by
foreign imported key

DEPT

4 Column name of primary key, referenced by
foreign imported key

DEPTNO

5 Catalog that has foreign key orcl

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the column
name that references the primary key in another
table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the foreign
key when the primary key is updated.

null

11 Delete rule, that is, what happens to the foreign
key when the primary key is deleted.

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

crossreference

4-25

For a description of the codes for update and delete rules, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for the DatabaseMetaData object property
getCrossReference.

See Also dmd, exportedkeys, get, importedkeys, primarykeys

database

4-26

4databasePurpose Connect to database

Syntax conn = database('datasourcename', 'username', 'password')
conn = database('databasename', 'username', 'password',

'driver','databaseurl')

Description conn = database('datasourcename', 'username', 'password') connects a
MATLAB session to a database via an ODBC driver, returning the connection
object to conn. The data source to which you are connecting is datasourcename.
You must have previously set up the data source – for instructions, see “Setting
Up a Data Source”. username and password are the username and/or password
required to connect to the database. If you do not need a username or a
password to connect to the database, use empty strings as the arguments.

conn = database('databasename', 'username', 'password', 'driver',
'databaseurl') connects a MATLAB session to a database, databasename,
via the specified JDBC driver, returning the connection object to conn. The
username and/or password required to connect to the database are username
and password. If you do not need a username or a password to connect to the
database, use empty strings as the arguments. databaseurl is the JDBC URL
object, jdbc:subprotocol:subname. The subprotocol is a database type, such
as oracle. The subname may contain other information used by driver, such
as the location of the database and/or a port number. The subname may take
the form //hostname:port/databasename. Find the correct driver name and
databaseurl format in the driver manufacturer’s documentation.

If database establishes a connection, MATLAB returns information about the
connection object.

Instance: 'SampleDB'
 UserName: ''
 Driver: []
 URL: []
 Constructor: [1x1

 com.mathworks.toolbox.database.databaseConnect]
 Message: []
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcConnection]
 TimeOut: 0
 AutoCommit: 'off'
 Type: 'Database Object'

database

4-27

Use logintimeout before you use database to specify the maximum amount of
time for which database tries to establish a connection.

You can have multiple database connections open at one time.

After connecting to a database, use the ping function to view status
information about the connection, and use dmd, get, and supports to view
properties of conn.

The database connection stays open until you close it using the close function.
Always close a connection after you finish using it.

Examples Example 1 – Establish ODBC Connection
To connect to an ODBC data source called Pricing, where the database has a
user mike and a password bravo, type

conn = database('Pricing', 'mike', 'bravo');

Example 2 – Establish ODBC Connection Without Username and Password
To connect to an ODBC data source SampleDB, where a username and password
are not needed, use empty strings in place of those arguments. Type

conn = database('SampleDB','','');

Example 3 – Establish JDBC Connection
In this JDBC connection example, the database is oracle, the username is
scott, and the password is tiger. The JDBC driver name is
oracle.jdbc.driver.OracleDriver and the URL to the database is
jdbc:oracle:oci7:.

conn = database('oracle','scott','tiger',...
'oracle.jdbc.driver.OracleDriver','jdbc:oracle:oci7:');

See Also close, dmd, get, isconnection, isreadonly, logintimeout, ping, supports

dmd

4-28

4dmdPurpose Construct database metadata object

Syntax dbmeta = dmd(conn)

Description dbmeta = dmd(conn) constructs a database metadata object for the database
connection conn, which was created using database. Use get and supports to
obtain properties of dbmeta. Use dmd and get(dbmeta) to obtain information
you need about a database, such as the database table names to retrieve data
using exec.

For a list of other functions you can perform on dbmeta, type

help dmd/Contents

Examples dbmeta = dmd(conn) creates the database metadata object dbmeta for the
database connection conn.

v = get(dbmeta) lists the properties of the database metadata object.

See Also columns, database, get, supports, tables

driver

4-29

4driverPurpose Construct database driver object

Syntax d = driver('s')

Description d = driver('s') constructs a database driver object d, from s, where s is a
database URL string of the form jdbc:odbc:<name> or <name>. The driver
object d is the first driver that recognizes s.

Examples d = driver('jdbc:odbc:thin:@144.212.33.130:1521:') creates driver
object d.

See Also get, isdriver, isjdbc, isurl, register

drivermanager

4-30

4drivermanagerPurpose Construct database drivermanager object

Syntax dm = drivermanager

Description dm = drivermanager constructs a database drivermanager object. You can
then use get and set to obtain and change the properties of dm, which are the
properties for all loaded database drivers as a whole.

Examples dm = drivermanager creates the database drivermanager object dm.

get(dm) returns the properties of the drivermanager object dm.

See Also get, register, set

exec

4-31

4execPurpose Execute SQL statement and open cursor

Syntax curs = exec(conn, 'sqlquery')

Description curs = exec(conn, 'sqlquery') executes the valid SQL statement
sqlquery, against the database connection conn, and opens a cursor. Running
exec returns the cursor object to the variable curs, and returns information
about the cursor object. The sqlquery argument can also be a stored procedure
for that database connection.

Use querytimeout to determine the maximum amount of time for which exec
will try to complete the SQL statement.

You can have multiple cursors open at one time.

After opening a cursor, use fetch to import data from the cursor. Use
resultset, rsmd, and statement to get properties of the cursor.

A cursor stays open until you close it using the close function. Always close a
cursor after you finish using it.

Examples Example 1 – Select All Data from Database Table
Select all data from the customers table accessed via conn. Assign the variable
curs to the returned cursor object.

curs = exec(conn, 'select * from customers')

curs =
 Attributes: []
 Data: 0
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select * from customers'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: 0

exec

4-32

Example 2 – Select One Column of Data from Database Table
Select country data from the customers table accessed via conn. Assign the
variable sqlquery to the SQL statement and assign curs to the returned
cursor.

sqlquery = 'select country from customers';
curs = exec(conn, sqlquery);

Example 3 – Roll Back or Commit Data Exported to Database Table
Use exec to roll back or commit data after running an insert or an update for
which the AutoCommit flag is off. To roll back data for conn, type

exec(conn, 'rollback')

To commit the data, type:

exec(conn, 'commit');

Example 4 – Run Stored Procedure
Execute the stored procedure sp_customer_list for the database connection
conn:

curs = exec(conn,'sp_customer_list');

See Also close, database, fetch, insert, procedures, querytimeout, resultset, rsmd,
set, update

exportedkeys

4-33

4exportedkeysPurpose Get information about exported foreign keys

Syntax e = exportedkeys(dbmeta, 'cata', 'sch')
e = exportedkeys(dbmeta, 'cata', 'sch', 'tab')

Description e = exportedkeys(dbmeta, 'cata', 'sch') returns the foreign exported
key information (that is, information about primary keys that are referenced
by other tables), in the schema sch, of the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using dmd.

e = exportedkeys(dbmeta, 'cata', 'sch', 'tab') returns the exported
foreign key information (that is, information about the primary key which is
referenced by other tables), in the table tab, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta, where
dbmeta was created using dmd.

Examples Type

e = exportedkeys(dbmeta,'orcl','SCOTT')

MATLAB returns

e =
 Columns 1 through 7
 'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'
 Columns 8 through 13
 'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object

• the cata field is empty because this database does not include catalogs

• SCOTT is the schema, sch

exportedkeys

4-34

The results show the foreign exported key information.

In the schema SCOTT, there is only one primary key that is exported to
(referenced by) another table. The table DEPT contains a field DEPTNO, its
primary key, that is referenced by the field DEPTNO in the table EMP. The
referenced table is DEPT and the referencing table is EMP. In the DEPT table,
DEPTNO is an exported key. Reciprocally, the DEPTNO field in the table EMP is an
imported key.

Column Description Value

1 Catalog containing primary key that is exported null

2 Schema containing primary key that is exported SCOTT

3 Table containing primary key that is exported DEPT

4 Column name of primary key that is exported DEPTNO

5 Catalog that has foreign key null

6 Schema that has foreign key SCOTT

7 Table that has foreign key EMP

8 Foreign key column name, that is the column
name that references the primary key in another
table

DEPTNO

9 Sequence number within the foreign key 1

10 Update rule, that is, what happens to the foreign
key when the primary key is updated.

null

11 Delete rule, that is, what happens to the foreign
key when the primary key is deleted.

1

12 Foreign key name FK_DEPTNO

13 Primary key name that is referenced by foreign
key

PK_DEPT

exportedkeys

4-35

For a description of the codes for update and delete rules, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for the DatabaseMetaData object property
getExporetedKeys.

See Also crossreference, dmd, get, importedkeys, primarykeys

fetch

4-36

4fetchPurpose Import data into MATLAB cell array

Syntax curs = fetch(curs, RowLimit)
curs = fetch(curs)
curs.Data

Description curs = fetch(curs, RowLimit) imports rows of data from the open SQL
cursor curs, up to the specified RowLimit, into the object curs. It is common
practice to reassign the variable curs from the open SQL cursor to the object
returned by fetch. The next time you run fetch, records are imported starting
with the row following RowLimit.

curs = fetch(curs) imports rows of data from the open SQL cursor curs, up
to the RowLimit specified by set, into the object curs. It is common practice to
reassign the variable curs from the open SQL cursor to the object returned by
fetch. The next time you run fetch, records are imported starting with the row
following RowLimit. If no RowLimit was specified by set, fetch imports all
remaining rows of data.

Running fetch returns information about the cursor object. The Data element
of the cursor object points to the cell array that contains the data returned by
fetch. The data types are preserved (cell arrays support mixed data types).
After running fetch, display the returned data by typing curs.Data.

Use get to view properties of curs.

Examples Example 1 – Import All Rows of Data
Import all of the data into the cursor object curs.

curs = fetch(curs)

MATLAB returns

curs =
 Attributes: []
 Data: {91x1 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select country from customers'
 Message: []
 Type: 'Database Cursor Object'

fetch

4-37

 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: [1x1

com.mathworks.toolbox.database.fetchTheData]

The fetch operation stores the data in a cell array pointed to by the element
curs.Data of the cursor object. To display data in the cell array curs.Data,
type

curs.Data

MATLAB returns all of the data, which in this example consists of 1 column
and 91 rows, some of which are shown here.

ans =
 'Germany'
 'Mexico'
 'Mexico'
 'UK'
 'Sweden'
 ...
 'USA'
 'Finland'
 'Poland'

Example 2 – Import Specified Number of Rows of Data
Specify the RowLimit argument to retrieve the first 3 rows of data.

curs = fetch(curs, 3)

MATLAB returns

curs =
 Attributes: []
 Data: {3x1 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 0
 SQLQuery: 'select country from customers'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

fetch

4-38

 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch: [1x1

com.mathworks.toolbox.database.fetchTheData]

Display the data by typing

curs.Data

MATLAB returns

ans =
 'Germany'
 'Mexico'
 'Mexico'

Entering the fetch function again returns the second 3 rows of data. Adding
the semicolon suppresses display of the results.

curs = fetch(curs, 3);

Display the data by typing

curs.Data

MATLAB returns

ans =
 'UK'
 'Sweden'
 'Germany'

See Also attr, cols, columnnames, exec, get, rows, resultset, set, width

get

4-39

4getPurpose Get object properties

Syntax v = get(object)
v = get(object, 'property')
v.property

Description v = get(object) returns a structure of the properties of object and the
corresponding property values, assigning the structure to v.

v = get(object, 'property') retrieves the value of property for object,
assigning the value to v.

v.property returns the value of property, after you have created v using get.

Use set(object) to see a list of writable properties for object.

Allowable objects are:

• “Database Connection Object”, created using database

• “Cursor Object”, created using exec or fetch

• “Driver Object”, created using driver

• “Database Metadata Object”, created using dmd

• “Drivermanager Object”, created using drivermanager

• “Resultset Object”, created using resultset

• “Resultset Metadata Object”, created using rsmd

If you are calling these objects from your own Java-based applications, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for more information about the object properties.

get

4-40

Database Connection Object
Allowable property names and returned values for a database connection object
are listed in the following table.

Property Value

'AutoCommit' Status of the AutoCommit flag, either on or
off, as specified by set

'Catalog' Names of catalogs in the data source, for
example 'Northwind'

'Driver' Driver used for the JDBC connection, as
specified by database

'Handle' Identifying JDBC connection object

'Instance' Name of the data source for an ODBC
connection or the database for a JDBC
connection, as specified by database

'Message' Error message returned by database

'ReadOnly' 1 if the database is read-only; 0 if the
database is writable

'TimeOut' Value for LoginTimeout

'TransactionIsolation' Value of current transaction isolation mode

'Type' Object type, specifically Database Object

'URL' For a JDBC connection only, the JDBC URL
object, jdbc:subprotocol:subname, as
specified by database

'UserName' Username required to connect to the
database, as specified by database; note that
you cannot use get to retrieve password

'Warnings' Warnings returned by database

get

4-41

Cursor Object
Allowable property names and returned values for a cursor object are listed in
the following table.

Driver Object
Allowable property names and examples of values for a driver object are listed
in the following table.

Property Value

'Attributes' Cursor attributes

'Data' Data in the cursor object data element (the query
results)

'DatabaseObject' Information about the database object

'RowLimit' Maximum number of rows to be returned by fetch,
as specified by set

'SQLQuery' SQL statement for the cursor, as specified by exec

'Message' Error message returned from exec or fetch

'Type' Object type, specifically Database Cursor Object

'ResultSet' Resultset object identifier

'Cursor' Cursor object identifier

'Statement' Statement object identifier

'Fetch' 0 for cursor created using exec; fetchTheData for
cursor created using fetch

Property Example of Value

'MajorVersion' 1

'MinorVersion' 1001

get

4-42

Database Metadata Object
There are dozens of properties for a database metadata object. Some of the
allowable property names and examples of their values are listed in the
following table.

Drivermanager Object
Allowable property names and examples of values for a drivermanager object
are listed in the following table.

Property Example of Value

'Catalogs' {4x1 cell}

'DatabaseProductName' 'ACCESS'

'DatabaseProductVersion' '03.50.0000'

'DriverName' 'JDBC-ODBC Bridge (odbcjt32.dll)'

'MaxColumnNameLength' 64

'MaxColumnsInOrderBy' 10

'URL' 'jdbc:odbc:dbtoolboxdemo'

'NullsAreSortedLow' 1

'Drivers' {'oracle.jdbc.driver.OracleDriver@1d8e09ef'
[1x37 char]}

'LoginTimeout' 0

'LogStream' []

get

4-43

Resultset Object
Some of the allowable property names for a resultset object and examples of
their values are listed in the following table.

Resultset Metadata Object
Allowable property names for a resultset metadata object and examples of
values are listed in the following table.

The empty strings for CatalogName and TableName indicate that the database
does not return these values.

For command line help on get, use the overloaded methods:

help cursor/get
help database/get
help dmd/get
help driver/get
help drivermanager/get

Property Example of Value

'CursorName' {'SQL_CUR92535700x' 'SQL_CUR92535700x'}

'MetaData' {1x2 cell}

'Warnings' {[] []}

Property Example of Value

'CatalogName' {'' ''}

'ColumnCount' 2

'ColumnName' {'Calc_Date' 'Avg_Cost'}

'ColumnTypeName' {'TEXT' 'LONG'}

'TableName' {'' ''}

'isNullable' {[1] [1]}

'isReadOnly' {[0] [0]}

get

4-44

help resultset/get
help rsmd/get

Examples Example 1 – Get Connection Property, Data Source Name
Connect to the database, SampleDB. Then get the name of the data source for
the connection and assign it to v.

conn = database('SampleDB', '', '');
v = get(conn, 'Instance')

MATLAB returns

v =
SampleDB

Example 2 – Get Connection Property, AutoCommit Flag Status
Determine the status of the AutoCommit flag for conn.

get(conn, 'AutoCommit')

ans =
on

Example 3 – Display Data in Cursor
Display the data in the cursor object, curs by typing

get(curs, 'Data')

or by typing

curs.Data

MATLAB returns

ans =
 'Germany'
 'Mexico'
 'France'
 'Canada'

In this example, curs contains one column with four records.

get

4-45

Example 4 – Get Database Metadata Object Properties
View the properties of the database metadata object for connection conn. Type

dbmeta = dmd(conn);
v = get(dbmeta)

MATLAB returns a list of properties, some of which are shown here.

v =
 AllProceduresAreCallable: 1
 AllTablesAreSelectable: 1
 DataDefinitionCausesTransaction: 1
 DataDefinitionIgnoredInTransact: 0
 DoesMaxRowSizeIncludeBlobs: 0
 Catalogs: {4x1 cell}
 ...
 NullPlusNonNullIsNull: 0
 NullsAreSortedAtEnd: 0
 NullsAreSortedAtStart: 0
 NullsAreSortedHigh: 0
 NullsAreSortedLow: 1
 UsesLocalFilePerTable: 0
 UsesLocalFiles: 1

To view the names of the catalogs in the database, type

v.Catalogs

MATLAB returns the catalog names

ans =
 'D:\matlabr12\toolbox\database\dbdemos\db1'
 'D:\matlabr12\toolbox\database\dbdemos\origtutorial'
 'D:\matlabr12\toolbox\database\dbdemos\tutorial'
 'D:\matlabr12\toolbox\database\dbdemos\tutorial1'

See Also columns, database, dmd, driver, drivermanager, exec, fetch, resultset,
rows, rsmd, set

importedkeys

4-46

4importedkeysPurpose Get information about imported foreign keys

Syntax i = importedkeys(dbmeta, 'cata', 'sch')
i = importedkeys(dbmeta, 'cata', 'sch', 'tab')

Description i = importedkeys(dbmeta, 'cata', 'sch') returns the foreign imported
key information, that is, information about fields that reference primary keys
in other tables, in the schema sch, of the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using dmd.

i = importedkeys(dbmeta, 'cata', 'sch', 'tab') returns the foreign
imported key information, that is, information about fields in the table tab,
that reference primary keys in other tables, in the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta, where
dbmeta was created using dmd.

Examples Type

i = importedkeys(dbmeta,'orcl','SCOTT')

MATLAB returns

i =
 Columns 1 through 7
 'orcl' 'SCOTT' 'DEPT' 'DEPTNO' 'orcl' 'SCOTT' 'EMP'
 Columns 8 through 13
 'DEPTNO' '1' 'null' '1' 'FK_DEPTNO' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

importedkeys

4-47

The results show the foreign imported key information as described in the
following table.

In the schema SCOTT there is only one foreign imported key. The table EMP
contains a field, DEPTNO, that references the primary key in the DEPT table, the
DEPTNO field. EMP is the referencing table and DEPT is the referenced table.

Column Description Value

1 Catalog containing primary key, referenced by
foreign imported key

orcl

2 Schema containing primary key, referenced by
foreign imported key

SCOTT

3 Table containing primary key, referenced by
foreign imported key

DEPT

4 Column name of primary key, referenced by
foreign imported key

DEPTNO

5 Catalog that has foreign imported key orcl

6 Schema that has foreign imported key SCOTT

7 Table that has foreign imported key EMP

8 Foreign key column name, that is the column
name that references the primary key in another
table

DEPTNO

9 Sequence number within foreign key 1

10 Update rule, that is, what happens to the foreign
key when the primary key is updated.

null

11 Delete rule, that is, what happens to the foreign
key when the primary key is deleted.

1

12 Foreign imported key name FK_DEPTNO

13 Primary key name in referenced table PK_DEPT

importedkeys

4-48

DEPTNO is a foreign imported key in the EMP table. Reciprocally, the DEPTNO field
in the table DEPT is an exported foreign key, as well as being the primary key.

For a description of the codes for update and delete rules, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for the DatabaseMetaData object property
getImportedKeys.

See Also crossreference, dmd, exportedkeys, get, primarykeys

indexinfo

4-49

4indexinfoPurpose Get indices and statistics for database table

Syntax x = indexinfo(dbmeta, 'cata', 'sch', 'tab')

Description x = indexinfo(dbmeta, 'cata', 'sch', 'tab') returns the indices and
statistics for the table tab, in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta, where dbmetawas created
using dmd.

Examples Type

x = indexinfo(dbmeta,'','SCOTT','DEPT')

MATLAB returns

x =
 Columns 1 through 8
 'orcl' 'SCOTT' 'DEPT' '0' 'null' 'null' '0' '0'
 'orcl' 'SCOTT' 'DEPT' '0' 'null' 'PK_DEPT' '1' '1'

 Columns 9 through 13
 'null' 'null' '4' '1' 'null'
 'DEPTNO' 'null' '4' '1' 'null'

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

• DEPT is the table tab

The results contain two rows, meaning there are two index columns. The
statistics for the first index column are shown in the following table.

indexinfo

4-50

For more information about the index information, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for a description of the DatabaseMetaData object
property getIndexInfo.

See Also dmd, get, tables

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Non-unique: 0 if index values can be non-unique,
1 otherwise

0

5 Index catalog null

6 Index name null

7 Index type 0

8 Column sequence number within index 0

9 Column name null

10 Column sort sequence null

11 Number of rows in the index table or number of
unique values in the index

4

12 Number of pages used for the table or number of
pages used for the current index

1

13 Filter condition null

insert

4-51

4insertPurpose Export MATLAB cell array data into database table

Syntax insert(conn, 'tab', colnames, exdata)

Description insert(conn, 'table', colnames, exdata) exports records from the
MATLAB cell array exdata, into new rows in an existing database table tab,
via the connection conn. Specify the column names for tab as strings in the
MATLAB cell array, colnames.

The status of the AutoCommit flag determines if insert automatically commits
the data or if you need to commit the data following the insert. View the
AutoCommit flag status for the connection using get and change it using set.
Commit the data using commit or issue an SQL commit statement via an exec
function. Roll back the data using rollback or issue an SQL rollback statement
via an exec function.

To replace existing data instead of adding new rows, use update.

Examples Example 1 – Insert a Record
Insert one record consisting of two columns, City and Avg_Temp, into the
Temperatures table. The data is San Diego, 88 degrees. The database
connection is conn.

Assign the data to the cell array.

exdata = {'San Diego', 88}

Create a cell array containing the column names in Temperatures.

colnames = {'City', 'Avg_Temp’}

Perform the insert.

insert(conn, 'Temperatures', colnames, exdata)

The row of data is added to the Temperatures table.

Example 2 – Insert Multiple Records
Insert a cell array, exdata, containing 28 rows of data with three columns, into
the Growth table. The data columns are Date, Avg_Length, and Avg_Wt. The
database connection is conn.

insert

4-52

Insert the data.

insert(conn, 'Growth', {'Date';'Avg_Length';'Avg_Wt'}, exdata)

The records are inserted in the table.

Example 3 – Import Records, Perform Computations, and Export Data
Perform calculations on imported data and then export the data. First import
all of the data in the products table.

curs = exec(conn, 'select * from products');
curs = fetch(curs);

Assign the variable id to the first column of data.

id = curs.Data(:,1)

Assign the variable price to the sixth column of data.

price = curs.Data(:,6)

Calculate the discounted price (25% off) and assign it to the variable
sale_price. You must convert the cell array price to a numeric array in order
to perform the calculation.

sale_price =.75*[price{:}]

To export the data, it must be in a cell array. The variable sale_price is a
numeric array because it was the result of the discount calculation. You must
convert sale_price to a cell array. To convert the columns of data in
sale_price to a cell arrays, type

sale_price = num2cell(sale_price);

Create an array, exdata, that contains the three columns of data to be
exported. Put the id data in column one, price in column two, and sale_price
in column three.

exdata = id(:,1);
exdata(:,2) = price;
exdata(:,3) = sale_price;

Assign the column names to a string array, colnames.

colnames={'product_id', 'price', 'sale_price'};

insert

4-53

Export the data to the Sale table.

insert(conn, 'Sale', colnames, exdata)

All rows of data are inserted into the Sale table.

Example 4 – Insert Followed by commit
This example demonstrates the use of the SQL commit function following an
insert. The AutoCommit flag is off.

Insert the cell array exdata into the column names colnames of the Error_Rate
table.

insert(conn, 'Error_Rate', colnames, exdata)

Commit the data using the commit function.

commit(conn)

Alternatively, you could commit the data using the exec function with an SQL
commit statement.

cursor = exec(conn,'commit');

See Also commit, database, exec, rollback, set, update

isconnection

4-54

4isconnectionPurpose Detect if database connection is valid

Syntax a = isconnection(conn)

Description a = isconnection(conn) returns 1 if the database connection conn is valid, or
returns 0 otherwise, where conn was created using database.

Examples Type

a = isconnection(conn)

and MATLAB returns

a =
 1

indicating that the database connection conn is valid.

See Also database, isreadonly, ping

isdriver

4-55

4isdriverPurpose Detect if driver is a valid JDBC driver object

Syntax a = isdriver(d)

Description a = isdriver(d) returns 1 if d is a valid JDBC driver object, or returns 0
otherwise, where d was created using driver.

Examples Type

a = isdriver(d)

and MATLAB returns

a =
 1

indicating that the database driver object d is valid.

See Also driver, get, isjdbc, isurl

isjdbc

4-56

4isjdbcPurpose Detect if driver is JDBC-compliant

Syntax a = isjdbc(d)

Description a = isjdbc(d) returns 1 if the driver object d is JDBC compliant, or returns 0
otherwise, where d was created using driver.

Examples Type

a = isjdbc(d)

and MATLAB returns

a =
 1

indicating that the database driver object d is JDBC compliant.

See Also driver, get, isdriver, isurl

isnullcolumn

4-57

4isnullcolumnPurpose Detect if last record read in resultset was NULL

Syntax a = isnullcolumn(rset)

Description a = isnullcolumn(rset) returns 1 if the last record read in the resultset
rset, was NULL, and returns 0 otherwise.

Examples Example 1 – Result Is Not NULL
Type

curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)

MATLAB returns

ans =
 0

indicating that the last record of data retrieved was not NULL. To verify this,
type

curs.Data

MATLAB returns

ans =
 [1400]

Example 2 – Result Is NULL
curs = fetch(curs,1);
rset = resultset(curs);
isnullcolumn(rset)

MATLAB returns

ans =
 1

indicating that the last record of data retrieved was NULL. To verify this, type

curs.Data

isnullcolumn

4-58

MATLAB returns

ans =
 [NaN]

See Also get, resultset

isreadonly

4-59

4isreadonlyPurpose Detect if database connection is read-only

Syntax a = isreadonly(conn)

Description a = isreadonly(conn) returns 1 if the database connection conn is read only,
or returns 0 otherwise, where conn was created using database.

Examples Type

a = isreadonly(conn)

and MATLAB returns

a =
 1

indicating that the database connection conn is read only. Therefore, you
cannot perform insert or update functions for this database.

See Also database, isconnection

isurl

4-60

4isurlPurpose Detect if the database URL is valid

Syntax a = isurl('s', d)

Description a = isurl('s', d) returns 1 if the database URL s, for the driver object d, is
valid, or returns 0 otherwise. The URL s is of the form jdbc:odbc:<name> or
<name>, and d is the driver object created using driver.

Examples Type

a = isurl('jdbc:odbc:thin:@144.212.33.130:1521:', d)

and MATLAB returns

a =
 1

indicating that the database URL, jdbc:odbc:thin:@144.212.33.130:1521:,
is valid for driver object d.

See Also driver, get, isdriver, isjdbc

logintimeout

4-61

4logintimeoutPurpose Set or get time allowed to establish database connection

Syntax timeout = logintimeout('driver', time)
timeout = logintimeout(time)
timeout = logintimeout('driver')
timeout = logintimeout

Description timeout = logintimeout('driver', time) sets the amount of time, in
seconds, allowed for a MATLAB session to try to connect to a database via the
specified JDBC driver. Use logintimeout before running the database
function. If MATLAB cannot connect within the allowed time, it stops trying.

timeout = logintimeout(time) sets the amount of time, in seconds, allowed
for a MATLAB session to try to connect to a database via an ODBC connection.
Use logintimeout before running the database function. If MATLAB cannot
connect within the allowed time, it stops trying.

timeout = logintimeout('driver') returns the time, in seconds, you set
previously using logintimeout for the JDBC connection specified by driver. A
returned value of zero means that the timeout value has not been set
previously; MATLAB stops trying to make a connection if it is not immediately
successful.

timeout = logintimeout returns the time, in seconds, you set previously
using logintimeout for an ODBC connection. A returned value of zero means
that the timeout value has not been set previously; MATLAB stops trying to
make a connection if it is not immediately successful.

If you do not use logintimeout and MATLAB tries to connect without success,
your MATLAB session could hang up.

logintimeout

4-62

Examples Example 1 – Get Timeout Value for ODBC Connection
Your database connection is via an ODBC connection. To see the current
timeout value, type

 logintimeout

MATLAB returns

ans =
 0

The timeout value has not been set.

Example 2 – Set Timeout Value for ODBC Connection
Set the timeout value to five seconds for an ODBC driver. Type

logintimeout(5)

MATLAB returns

ans =
 5

Example 3 – Get and Set Timeout Value for JDBC Connection
Your database connection is via the Oracle JDBC driver. First see what the
current timeout value is. Type

logintimeout('oracle.jdbc.driver.OracleDriver')

MATLAB returns

ans =
 0

The timeout value is currently 0. Set the timeout to 10 seconds. Type

timeout = logintimeout('oracle.jdbc.driver.OracleDriver', 10)

MATLAB returns

timeout =
 10

logintimeout

4-63

Verify the timeout value for the JDBC driver. Type

logintimeout('oracle.jdbc.driver.OracleDriver')

MATAB returns:

ans =
 10

 See Also database, get, set

namecolumn

4-64

4namecolumnPurpose Map resultset column name to resultset column index

Syntax x = namecolumn(rset, n)

Description x = namecolumn(rset, n) maps a resultset column name n, to its resultset
column index, for the resultset rset, where rset was created using resultset,
and n is a string or cell array of strings containing the column names. Get the
column names for a given cursor using columnnames.

Examples Type

x = namecolumn(rset, {'DNAME';'LOC'})

MATLAB returns

x =
 2 3

In this example, the resultset object is rset. The column names for which you
want the column index are DNAME and LOC. The results show that DNAME is
column 2 and LOC is column 3.

To get the index for only the LOC column, type

x = namecolumn(rset, 'LOC')

 See Also columnnames, resultset

ping

4-65

4pingPurpose Get status information about database connection

Syntax ping(conn)

Description ping(conn) returns the status information about the database connection,
conn. If the connection is open, ping returns status information and otherwise
it returns an error message.

Examples Example 1 – Get Status Information About ODBC Connection
Type

ping(conn)

where conn is a valid ODBC connection. MATLAB returns

ans =
 DatabaseProductName: 'ACCESS'
 DatabaseProductVersion: '03.50.0000'
 JDBCDriverName: 'JDBC-ODBC Bridge (odbcjt32.dll)'
 JDBCDriverVersion: '1.1001 (04.00.4202)'
 MaxDatabaseConnections: 64
 CurrentUserName: 'admin'
 DatabaseURL: 'jdbc:odbc:SampleDB'
 AutoCommitTransactions: 'True'

ping

4-66

Example 2 – Get Status Information About JDBC Connection
Type

ping(conn)

where conn is a valid JDBC connection.

MATLAB returns

ans =
 DatabaseProductName: 'Oracle'
 DatabaseProductVersion: [1x166 char]
 JDBCDriverName: 'Oracle JDBC driver'
 JDBCDriverVersion: '7.3.4.0.2'
 MaxDatabaseConnections: 0
 CurrentUserName: 'scott'
 DatabaseURL: 'jdbc:oracle:thin:@144.212.33.

 228:1521:orcl'
 AutoCommitTransactions: 'True'

Example 3 – Unsuccessful Request for Information About Connection
Type

ping(conn)

where conn has been terminated or was not successful. MATLAB returns

Cannot Ping the Database Connection

See Also database, dmd, get, isconnection, set, supports

primarykeys

4-67

4primarykeysPurpose Get primary key information for database table or schema

Syntax k = primarykeys(dbmeta, 'cata', 'sch')
k = primarykeys(dbmeta, 'cata', 'sch', 'tab')

Description k = primarykeys(dbmeta, 'cata', 'sch') returns the primary key
information for all tables in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta, where dbmetawas created
using dmd.

k = primarykeys(dbmeta, 'cata', 'sch’, 'tab') returns the primary key
information for the table tab, in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta, where dbmetawas created
using dmd.

Examples Type
k = primarykeys(dbmeta,'orcl','SCOTT','DEPT')

MATLAB returns
k =
 'orcl' 'SCOTT' 'DEPT' 'DEPTNO' '1' 'PK_DEPT'

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

• DEPT is the table tab

primarykeys

4-68

The results show the primary key information as described in the following
table.

See Also crossreference, dmd, exportedkeys, get, importedkeys

Column Description Value

1 Catalog orcl

2 Schema SCOTT

3 Table DEPT

4 Column name of primary key DEPTNO

5 Sequence number within primary key 1

6 Primary key name PK_DEPT

procedurecolumns

4-69

4procedurecolumnsPurpose Get catalog’s stored procedure parameters and result columns

Syntax pc = procedurecolumns(dbmeta, 'cata')
pc = procedurecolumns(dbmeta, 'cata', 'sch')

Description pc = procedurecolumns(dbmeta, 'cata') returns the stored procedure
parameters and result columns for the catalog cata, for the database whose
database metadata object is dbmeta, which was created using dmd.

pc = procedurecolumns(dbmeta, 'cata', 'sch') returns the stored
procedure parameters and result columns for the schema sch, of the catalog
cata, for the database whose database metadata object is dbmeta, which was
created using dmd.

MATLAB returns one row for each column in the results generated by running
the stored procedure.

Examples Type

pc = procedurecolumns(dbmeta,'tutorial', 'ORG')

where:

• dbmeta is the database metadata object

• tutorial is the catalog cata

• ORG is the schema sch

MATLAB returns

pc =
 Columns 1 through 7
 [1x19 char] 'ORG' 'display' 'Month' '3' '12' 'TEXT'
 [1x19 char] 'ORG' 'display' 'Day' '3' '4' 'INTEGER'

 Columns 8 through 13
 '50' '50' 'null' 'null' '1' 'null'
 '50' '4' 'null' 'null' '1' 'null'

procedurecolumns

4-70

The results show the stored procedure parameter and result information.
Because two rows of data are returned, there will be two columns of data in the
results when you run the stored procedure. From the results, you can see that
running the stored procedure display returns the Month and Day. Following is
a full description of the procedurecolumns results for the first row (Month).

For more information about the procedurecolumns results, see
http://java.sun.com/products/jdk/1.2/docs/api/java/sql/
package-summary.html for the DatabaseMetaData object property
getProcedureColumns.

See Also dmd, get, procedures

Column Description Value for First Row

1 Catalog 'D:\orgdatabase\orcl'

2 Schema 'ORG'

3 Procedure name 'display'

4 Column/parameter name 'MONTH'

5 Column/parameter type '3'

6 SQL data type '12'

7 SQL data type name 'TEXT'

8 Precision '50'

9 Length '50'

10 Scale 'null'

11 Radix 'null'

12 Nullable '1'

13 Remarks 'null'

procedures

4-71

4proceduresPurpose Get catalog’s stored procedures

Syntax p = procedures(dbmeta, 'cata')
p = procedures(dbmeta, 'cata', 'sch')

Description p = procedures(dbmeta, 'cata') returns the stored procedures in the
catalog cata, for the database whose database metadata object is dbmeta,
which was created using dmd.

p = procedures(dbmeta, 'cata', 'sch') returns the stored procedures in
the schema sch, of the catalog cata, for the database whose database metadata
object is dbmeta, which was created using dmd.

Stored procedures are SQL statements that are saved with the database. You
can use the exec function to run a stored procedure, providing the stored
procedure as the sqlquery argument instead of actually entering the sqlquery
statement as the argument.

Examples Type

p = procedures(dbmeta,'DBA')

where dbmeta is the database metadata object and the catalog is DBA. MATLAB
returns the names of the stored procedures

p =
 'sp_contacts'
 'sp_customer_list'
 'sp_customer_products'
 'sp_product_info'
 'sp_retrieve_contacts'
 'sp_sales_order'

Execute the stored procedure sp_customer_list for the database connection
conn and fetch all of the data. Type

curs = exec(conn,'sp_customer_list');
curs = fetch(conn)

procedures

4-72

MATLAB returns

curs =
 Attributes:[]
 Data:{10x2 cell}
 DatabaseObject:[1x1 database]
 RowLimit:0
 SQLQuery:'sp_customer_list'
 Message:[]
 Type:'Database Cursor Object'
 ResultSet:[1x1 sun.jdbc.odbc.JdbcOdbcResultSet]
 Cursor:[1x1 com.mathworks.toolbox.database.sqlExec]
 Statement:[1x1 sun.jdbc.odbc.JdbcOdbcStatement]
 Fetch:[1x1

com.mathworks.toolbox.database.fetchTheData]

View the results by typing

curs.Data

MATLAB returns

ans =
 [101] 'The Power Group'
 [102] 'AMF Corp.'
 [103] 'Darling Associates'
 [104] 'P.S.C.'
 [105] 'Amo & Sons'
 [106] 'Ralston Inc.'
 [107] 'The Home Club'
 [108] 'Raleigh Co.'
 [109] 'Newton Ent.'
 [110] 'The Pep Squad'

See Also dmd, exec, get, procedurecolumns

querybuilder

4-73

4querybuilderPurpose Start visual SQL query builder

Syntax querybuilder

Description querybuilder starts the Visual Query Builder (VQB), an easy to use interface
for building and running SQL queries to retrieve data from databases.

Examples For examples of and more information about using the Visual Query Builder,
use the VQB Help menu or see Chapter 2, “Visual Query Builder Tutorial”. You
can also get help in any of the Visual Query Builder dialog boxes by clicking the
Help button in the dialog box.

querytimeout

4-74

4querytimeoutPurpose Get time allowed for a database SQL query to succeed

Syntax timeout = querytimeout(curs)

Description timeout = querytimeout(curs) returns the amount of time, in seconds,
allowed for an SQL query of curs to succeed, where curs is created by running
exec. If a query cannot be completed in the allowed time, MATLAB stops trying
to perform the exec. The timeout value is defined for a database by the
database administrator. If the timeout value is zero, a query must be completed
immediately.

Examples Get the current database timeout setting for curs.

querytimeout(curs)

ans =
 10

Limitations If a database does not have a database timeout feature, MATLAB returns

[Driver]Driver not capable

The Microsoft Access ODBC driver and Oracle ODBC driver do not support
querytimeout.

 See Also exec

register

4-75

4registerPurpose Load database driver

Syntax register(d)

Description register(d) loads the database driver object d, which was created using
driver. Use unregister to unload the driver.

Although database automatically loads the driver, register allows you to get
properties of the driver before connecting. The register function also allows
you to use drivermanager to set and get properties for all loaded drivers.

Examples register(d) loads the database driver object d.

get(d) returns properties of the driver object.

See Also driver, drivermanager, get, unregister

resultset

4-76

4resultsetPurpose Construct resultset object

Syntax rset = resultset(curs)

Description r = resultset(curs) creates a resultset object rset, for the cursor curs,
where curs was created using exec or fetch. You can get properties of rset,
create a resultset metadata object using rsmd, or make calls to rset using your
own Java-based applications. You can also perform other functions on rset:
clearwarnings, isnullcolumn, and namecolumn. Use close to close the
resultset, which frees up resources.

Examples Type

rset = resultset(curs)

MATLAB returns

rset =
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSet]

See Also clearwarnings, close, exec, fetch, get, isnullcolumn, namecolumn, rsmd

rollback

4-77

4rollbackPurpose Undo database changes

Syntax rollback(conn)

Description rollback(conn) reverses changes made via insert or update to the database
connection conn. The rollback function reverses all changes made since the last
commit or rollback, or the last exec that performed a commit or rollback. The
AutoCommit flag for conn must be off to use rollback.

Examples Ensure the AutoCommit flag for connection conn is off by typing

get(conn,'AutoCommit')

MATLAB returns

ans =
off

Insert the data contained in exdata into the columns DEPTNO, DNAME, and LOC,
in the table DEPT, for the data source conn. Type

insert(conn, 'DEPT', {'DEPTNO';'DNAME';'LOC'}, exdata)

Roll back the data inserted in the database by typing

rollback(conn)

The data in exdata is removed from the database so the database contains the
same data it did before the insert.

See Also commit, database, exec, get, insert, update

rows

4-78

4rowsPurpose Get number of rows in fetched data set

Syntax numrows = rows(curs)

Description numrows = rows(curs) returns the number of rows in the fetched data set
curs.

Examples There are four rows in the fetched data set curs.

numrows = rows(curs)

numrows =
 4

To see the four rows of data in curs, type

curs.Data

MATLAB returns

ans =
 'Germany'
 'Mexico'
 'France'
 'Canada'

See Also cols, fetch, get, rsmd

rsmd

4-79

4rsmdPurpose Construct resultset metadata object

Syntax rsmeta = rsmd(rset)
rsmeta = rsmd(curs)

Description rsmeta = rsmd(rset) creates a resultset metadata object rsmeta, for the
resultset object rset, or the cursor object curs, where rset was created using
resultset, and curswas created using exec or fetch. Get properties of rsmeta
using get, or make calls to rsmeta using your own Java-based applications.

Examples Type

rsmeta=rsmd(rset)

MATLAB returns

rsmeta =
 Handle: [1x1 sun.jdbc.odbc.JdbcOdbcResultSetMetaData]

Use v = get(rsmeta) and v.property to see properties of the resultset
metadata object.

See Also exec, get, resultset

set

4-80

4setPurpose Set properties for database, cursor, or drivermanager object

Syntax set(object, 'property', value)
set(object)

Description set(object, 'property', value) sets the value of property to value for the
specified object.

set(object) displays all properties for object.

Allowable values you can set for object are:

• “Database Connection Object”, created using database

• “Cursor Object”, created using exec or fetch

• “Drivermanager Object”, created using drivermanager

Not all databases allow you to set all of these properties. If your database does
not allow you to set a particular property, you will receive an error message
when you try to do so.

set

4-81

Database Connection Object
The allowable values for property and value for a database connection object
are listed in the following table.

Note that if you do not run commit after running an update or insert function,
and then close the database connection using close, the data usually is
committed automatically at that time. Your database administrator can tell
you how your database deals with this.

Property Value Description

'AutoCommit' 'on' Database data is written and
committed automatically when
you run an insert or update
function. You cannot use rollback
to reverse it and you do not need
to use commit because the data is
committed automatically.

'off' Database data is not committed
automatically when you run an
insert or update function. In this
case, after you run insert or
update, you can use rollback to
reverse the insert or update.
When you are sure the data is
correct, follow an insert or
update with a commit.

'ReadOnly' 0 Not read-only, that is, writable

1 Read-only

'TransactionIsolation' positive
integer

Current transaction isolation level

set

4-82

Cursor Object
The allowable property and value for a cursor object are listed in the following
table.

Drivermanager Object
The allowable property and value for a drivermanager object are listed in the
following table.

For command line help on set, use the overloaded methods:

help cursor/set
help database/set
help drivermanager/set

Examples Example 1 – Set RowLimit for Cursor
This example uses set to define the RowLimit. It establishes a JDBC
connection, retrieves all data from the EMP table, sets the RowLimit to 5, and
uses fetch with no arguments to retrieve the data. Only five rows of data are
returned by fetch.

conn=database('orcl','scott','tiger','oracle.jdbc.driver...
OracleDriver','jdbc:oracle:thin:@144.212.33.228:1521:');

curs=exec(conn, 'select * from EMP');
set(curs, 'RowLimit', 5)

Property Value Description

'RowLimit' positive
integer

Sets the RowLimit for fetch. This is an
alternative to defining the RowLimit as an
argument of fetch. Note that the behavior of
fetch when you define RowLimit using set
differs depending on the database.

Property Value Description

'LoginTimeout' positive
integer

Sets the logintimeout value for the
set of loaded database drivers as a
whole.

set

4-83

curs=fetch(curs)
curs =
 Attributes: []
 Data: {5x8 cell}
 DatabaseObject: [1x1 database]
 RowLimit: 5
 SQLQuery: 'select * from EMP'
 Message: []
 Type: 'Database Cursor Object'
 ResultSet: [1x1 oracle.jdbc.driver.OracleResultSet]
 Cursor: [1x1 com.mathworks.toolbox.database.sqlExec]
 Statement: [1x1 oracle.jdbc.driver.OracleStatement]
 Fetch: [1x1

 com.mathworks.toolbox.database.fetchTheData]

As seen above, the RowLimit property of curs is now 5 and the Data property is
5x8 cell, meaning five rows of data were returned.

For the database in this example, the RowLimit acts as the maximum number
of rows you can retrieve. Therefore, if you run the fetch function again, no data
is returned.

Example 2 – Set AutoCommit Flag to On for Connection
This example shows a database update when the AutoCommit flag is on. First
determine the status of the AutoCommit flag for the database connection conn.

get(conn, 'AutoCommit')

ans =
off

The flag is off.

Set the flag status to on and verify it.

set(conn, 'AutoCommit', 'on');
get(conn, 'AutoCommit')

ans =
on

set

4-84

Insert data, cell array exdata, into the column names colnames, of the Growth
table.

insert(conn, 'Growth', colnames, exdata)

The data is inserted and committed.

Example 3 – Set AutoCommit Flag to Off for Connection and Commit Data
This example shows a database insert when the AutoCommit flag is off and
the data is then committed. First set the AutoCommit flag to off for database
connection conn.

set(conn, 'AutoCommit', 'off');

Insert data, cell array exdata, into the column names colnames, of the
Avg_Freight_Cost table.

insert(conn, 'Avg_Freight_Cost', colnames, exdata)

Commit the data.

commit(conn)

Example 4 – Set AutoCommit Flag to Off for Connection and Roll Back
Data
This example shows a database update when the AutoCommit flag is off and
the data is then rolled back. First set the AutoCommit flag to off for database
connection conn.

set(conn, 'AutoCommit', 'off');

Update the data in the column names specified by colnames, of the
Avg_Freight_Weight table, for the record selected by whereclause, using data
contained in cell array exdata.

update(conn, 'Avg_Freight_Weight', colnames, exdata, whereclause)

The data was written but not committed.

Roll back the data.

rollback(conn)

The data in the table is now the same as it was before update was run.

set

4-85

Example 5 – Set LoginTimeout for Drivermanager Object
In this example, create a drivermanager object dm, and set the LoginTimeout
value to 3 seconds. Type:

dm = drivermanager;
set(dm,'LoginTimeout',3);

To verify the result, type

logintimeout

MATLAB returns

ans =
 3

See Also database, drivermanager, exec, fetch, get, insert, logintimeout, ping,
update

setdbprefs

4-86

4setdbprefsPurpose Sets preferences for database actions for handling NULL values

Syntax setdbprefs
setdbprefs('property')
setdbprefs('property', 'value')
setdbprefs({'property1'; ... ;'propertyn'}, {'value1'; ... ;

'valuen'})

Description setdbprefs returns the current values for database action preferences.

setdbprefs('property') returns the current preference value for the
specified property.

setdbprefs('property', 'value') sets the preference to value for the
specified property.

setdbprefs({'property1'; ... ;'propertyn'}, {'value1'; ... ;
'valuen'}) sets the preference values to value1 through valuen for the
properties property1 through propertyn.

Allowable properties are listed in the following table.

Examples Example 1 – setdbprefs
Type setdbprefs and MATLAB returns

 NullNumberRead: 'NaN'

Allowable Properties Description

'NullNumberRead' How NULL numbers in a database are
represented when imported into MATLAB

'NullNumberWrite' Numbers in MATLAB that are represented as
NULL when exported to a database

'NullStringRead' How NULL strings in a database are represented
when imported into MATLAB

'NullStringWrite' Strings in MATLAB that are represented as
NULL when exported to a database

setdbprefs

4-87

 NullNumberWrite: 'NaN'
 NullStringRead: 'null'
 NullStringWrite: 'null'

which means:

• any NULL number in the database is read into MATLAB as NaN

• any NaN number in MATLAB is exported to the database as a NULL number

• any NULL string in the database is read into MATLAB as 'null'

• any 'null' string in MATLAB is exported to the database as a NULL string

Example 2 – setdbprefs(property)
Type setdbprefs ('NullNumberRead') and MATLAB returns

NullNumberRead: '0'

which means any NULL number in the database is read into MATLAB as 0.

Example 3 – setdbprefs(property, value)
Type setdbprefs ('NullStringWrite','NaN')

which means that any 'NaN' string in MATLAB is exported to the database as
a NULL string.

Example 4 – setdbprefs({'property1'; ... ;'propertyn'}, ...
{'value1';'valuen'})

Type

setdbprefs({'NullStringRead';'NullStringWrite';...
'NullNumberRead';'NullNumberWrite'},{'null';'null';'NaN';'NaN'})

which means:

• any NULL string in the database is read into MATLAB as 'null'

• any 'null' string in MATLAB is exported to the database as a NULL string

• any NULL number in the database is read into MATLAB as NaN

• any NaN number in MATLAB is exported to the database as a NULL number

sql2native

4-88

4sql2nativePurpose Convert JDBC SQL grammar to system’s native SQL grammar

Syntax n = sql2native(conn, 'sqlquery')

Description n = sql2native(conn, 'sqlquery') for the connection conn, which was
created using database, converts the SQL statement string sqlquery from
JDBC SQL grammar into the database system’s native SQL grammar,
returning the native SQL statement to n.

supports

4-89

4supportsPurpose Detect if property is supported by database metadata object

Syntax a = supports(dbmeta)
a = supports(dbmeta, 'property')
a.property

Description a = supports(dbmeta) returns a structure of the properties of dbmeta, which
was created using dmd, and the corresponding property values, 1 or 0, where 1
means the property is supported and 0 means the property is not supported.

a = supports(dbmeta, 'property') returns the value, 1 or 0, of property
for dbmeta, which was created using dmd, where 1 means the property is
supported and 0 means the property is not supported.

a.property returns the value of property, after you created a using supports.

There are dozens of properties for dbmeta. Examples include 'GroupBy' and
'StoredProcedures'.

Examples Type

a = supports(dbmeta, 'GroupBy')

and MATLAB returns

a =
 1

indicating that the database supports the use of SQL group-by clauses.

To find the GroupBy value as well as values for all other properties, type

a = supports(dbmeta)

MATLAB returns a list of properties and their values. The GroupBy property is
included in the list. You can also see its value by typing

a.GroupBy

to which MATLAB returns

a =
 1

supports

4-90

See Also database, dmd, get, ping

tableprivileges

4-91

4tableprivilegesPurpose Get database table privileges

Syntax tp = tableprivileges(dbmeta, 'cata')
tp = tableprivileges(dbmeta, 'cata', 'sch')
tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab')

Description tp = tableprivileges(dbmeta, 'cata') returns the list of table privileges
for all tables in the catalog cata, for the database whose database metadata
object is dbmeta, where dbmeta was created using dmd.

tp = tableprivileges(dbmeta, 'cata', 'sch') returns the list of table
privileges for all tables in the schema sch, of the catalog cata, for the database
whose database metadata object is dbmeta, where dbmeta was created using
dmd.

tp = tableprivileges(dbmeta, 'cata', 'sch', 'tab') returns the list of
privileges for the table tab, in the schema sch, of the catalog cata, for the
database whose database metadata object is dbmeta, where dbmetawas created
using dmd.

Examples Type

tp = tableprivileges(dbmeta,'msdb','geck', 'builds')

MATLAB returns

tp =
 'DELETE' 'INSERT' 'REFERENCES' 'SELECT' 'UPDATE'

In this example:

• dbmeta is the database metadata object

• msdb is the catalog cata

• geck is the schema sch

• builds is the table tab.

The results show the set of privileges.

See Also dmd, get, tables

tables

4-92

4tablesPurpose Get database table names

Syntax t = tables(dbmeta, 'cata')
t = tables(dbmeta, 'cata', 'sch')

Description t = tables(dbmeta, 'cata') returns the list of all tables and their table
types in the catalog cata, for the database whose database metadata object is
dbmeta, where dbmeta was created using dmd.

t = tables(dbmeta, 'cata', 'sch') returns the list of tables and table
types in the schema sch, of the catalog cata, for the database whose database
metadata object is dbmeta, where dbmeta was created using dmd.

For command line help on tables, use the overloaded method

help dmd/tables

Examples Type

t = tables(dbmeta,'orcl', 'SCOTT')

MATLAB returns

t =
 'BONUS' 'TABLE'
 'DEPT' 'TABLE'
 'EMP' 'TABLE'
 'SALGRADE' 'TABLE'
 'TRIAL' 'TABLE'

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

The results show the names and types of the five tables.

See Also attr, bestrowid, dmd, get, indexinfo, tableprivileges

unregister

4-93

4unregisterPurpose Unload database driver

Syntax unregister(d)

Description unregister(d) unloads the database driver object d, which was loaded using
register. Running unregister frees up system resources. If you do not use
unregister to unload a registered driver, it automatically unloads when you
end the MATLAB session.

Examples unregister(d) unloads the database driver object d.

See Also register

update

4-94

4updatePurpose Replace data in database table with data from MATLAB cell array

Syntax update(conn, 'tab', colnames, exdata, 'whereclause')

Description update(conn, 'tab', colnames, exdata, 'whereclause') exports data
from the MATLAB cell array exdata, into the database table tab, via the
database connection conn. It replaces existing records in the table as specified
by the SQL command whereclause. Specify the column names for tab as
strings in the MATLAB cell array, colnames.

The status of the AutoCommit flag determines if update automatically commits
the data or if a commit is needed. View the AutoCommit flag status for the
connection using get and change it using set. Commit the data using commit
or issue an SQL commit statement via the exec function. Roll back the data
using rollback or issue an SQL rollback statement via the exec function.

To add new rows instead of replacing existing data, use insert.

Examples Example 1 – Update a Record
In the Birthdays table, update the record where First_Name is Jean, replacing
the current value for Age with the new value, 40. The connection is conn.

Define a cell array containing the column name you are updating, Age.

colnames = {'Age'}

Define a cell array containing the new data.

exdata(1,1) = {40}

Perform the update.

update(conn, 'Birthdays', colnames, exdata, ...
 'where First_Name = ''Jean''')

Example 2 – Update Followed by rollback
This example shows a database update when the AutoCommit flag is off and
the data is then rolled back. First set the AutoCommit flag to off for database
connection conn.

set(conn, 'AutoCommit', 'off')

update

4-95

Update the data in the column Date of the Error_Rate table for the record
selected by whereclause using data contained in the cell array exdata.

update(conn, 'Error_Rate', {'Date'}, exdata, whereclause)

The data was written but not committed.

Roll back the data.

rollback(conn)

The update was reversed; the data in the table is the same as it was before
update was run.

See Also commit, database, insert, rollback, set

versioncolumns

4-96

4versioncolumnsPurpose Get automatically updated table columns

Syntax vl = versioncolumns(dbmeta, 'cata')
vl = versioncolumns(dbmeta, 'cata', 'sch')
vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab')

Description vl = versioncolumns(dbmeta, 'cata') returns the list of all columns that
are automatically updated when any row value is updated, for the catalog cata,
for the database whose database metadata object is dbmeta, where dbmeta was
created using dmd.

vl = versioncolumns(dbmeta, 'cata', 'sch') returns the list of all
columns that are automatically updated when any row value is updated, for the
schema sch, in the catalog cata, for the database whose database metadata
object is dbmeta, where dbmeta was created using dmd.

vl = versioncolumns(dbmeta, 'cata', 'sch', 'tab') returns the list of
all columns that are automatically updated when any row value is updated, in
the table tab, for the schema sch, in the catalog cata, for the database whose
database metadata object is dbmeta, where dbmeta was created using dmd.

Examples Type

vl = versioncolumns(dbmeta,'orcl','SCOTT','BONUS','SAL')

MATLAB returns

vl =
 {}

In this example:

• dbmeta is the database metadata object

• orcl is the catalog cata

• SCOTT is the schema sch

• BONUS is the table tab

• SAL is the column name l

The results show an empty set, meaning no columns automatically update
when any row value is updates.

versioncolumns

4-97

See Also columns, dmd, get

width

4-98

4widthPurpose Get field size of column in fetched data set

Syntax colsize = width(curs, colnum)

Description colsize = width(cursor, colnum) returns the field size of the specified
column number colnum, in the fetched data set curs.

Examples Get the width of the first column of the fetched data set, curs:

colsize = width(curs, 1)

colsize =

 11

The field size of column one is 11 characters (bytes).

See Also attr, cols, columnnames, fetch, get

I-1

Index

Symbols
[] 3-39
{ } 3-38, 3-40

A
Advanced query options in VQB 2-22
All option in VQB 2-22
Apply in VQB 2-25
attr 3-13, 4-9
Attributes 4-41
attributes of data 3-13, 4-9
AutoCommit 3-17, 4-40, 4-81

B
bestrowid 4-11
braces, curly 3-38, 3-40
brackets, square 3-39
bridge, JDBC/ODBC 1-3

C
Catalog 4-40
CatalogName 4-43
cell arrays

assigning values to cells 3-17
converting to 3-24
converting to vector 3-16
for exporting data 3-17
for query results 2-10, 3-8, 4-36
using in MATLAB 3-36

celldisp 3-39

Charting dialog box 2-16
data (x, y, z, and color) 2-17
Display 2-18
legend 2-17
preview 2-17
types of charts 2-16

charting query results 2-16
classpath.txt file 1-12
clearing variables from Data area 2-11
clearwarnings 4-12
close 3-13, 3-21, 4-13
cols 3-12, 4-15
ColumnCount 4-43
ColumnName 4-43
columnnames 3-12, 3-23, 4-16
columnprivileges 4-17
columns

attributes 3-13
automatically updated 4-96
cross reference 4-23
exported keys 4-33
foreign key information 4-46
imported key information 4-46
names 3-12, 3-17, 4-9, 4-16, 4-19
number 4-15
optimal set to identify row 4-11
primary key information 4-67
privileges 4-17
width 3-12, 4-98

columns 4-19
ColumnTypeName 4-43
columnWidth 4-9
commands

alphabetical order 4-8
grouped by category 4-2

Index

I-2

commit 3-17, 4-21
via exec 4-32

Condition in VQB 2-24
confds 1-13, 4-22
Configure Data Source dialog box 4-22
connection

clearing warnings for 4-12
closing 3-21, 4-13
creating 4-26
database, opening (establishing) 3-7, 4-26
information 4-65
JDBC 4-40
messages 4-40
object 3-7
opening 4-26
properties 4-39, 4-80
read-only 4-59
status 3-7, 4-65
time allowed for 3-6, 4-61
validity 4-54
warnings 4-40

constructor functions 3-4
conventions, documentation ix
converting cell array to vector 3-16
converting numeric array to cell array 3-41
crossreference 4-23
currency 4-9
Current clauses area in VQB 2-25
Cursor 4-41

cursor
attributes 4-41
closing 3-21, 4-13
creating via exec 4-31
creating via fetch 4-36
data element 4-41
error messages 4-41
importing data 3-9
object 3-8, 4-36
opening 3-8
properties 4-39, 4-80
resultset object 4-76

D
Data 4-41
data

attributes 3-13, 4-9
cell array 3-17
column names 3-12, 4-16
column numbers 3-12, 4-15
committing 4-21, 4-81
displaying results in VQB 2-13
exporting 3-18, 4-51
field names 4-16
importing 3-9, 4-36
information about 3-11
inserting into database 3-25
replacing 3-20, 3-21, 4-94
retrieving from cell array 3-38
rolling back 4-77, 4-81
rows 3-11, 4-78
types iv, 1-4
updating 4-94

Data area in VQB 2-8, 2-11

Index

I-3

data source
definition 1-6
for connection 4-26
ODBC connection 4-40
selecting for VQB 2-7
setting up 1-6

JDBC 1-12, 4-22
local ODBC 1-6
remote ODBC 1-8

data type 4-9
database

connecting to 3-7, 4-26
JDBC connection 4-40
metadata object

creating 4-28
functions 3-32
properties 4-39
properties supported 4-89

name 4-26
supported databases 1-2
URL 4-26

database 3-7, 4-26
Database Toolbox

about ii
features iv
installing 1-5
relationship of functions to VQB 2-4
starting 1-14

DatabaseObject 4-41
dbdemos 3-3
demos 3-3

dbimportdemo 3-6
dbinfodemo 3-11
dbinsert2demo 3-22
dbinsertdemo 3-14
dbupdatedemo 3-20
Visual Query Builder 2-4

displaying
chart 2-18
query results

as chart 2-16
as report 2-19
in Report Generator 2-20
relationally 2-13

Distinct option in VQB 2-22
dmd 3-26, 4-28
documentation

conventions ix
HTML viii
PDF viii

dotted line in display of results 2-14
driver 3-33, 4-29, 4-40
driver object

functions 3-33, 3-35, 4-6
properties 3-33

drivermanager 3-34, 4-30
drivermanager object 3-33, 3-34

properties 4-39, 4-80
Drivers 4-42
drivers

JDBC 1-3
JDBC compliance 4-56
loading 4-75
ODBC 1-3
properties 4-30, 4-39
supported 1-3
unloading 4-93
validity 4-55
versions 3-33

E
editing clauses in VQB 2-26
error messages 4-40, 4-41

Index

I-4

examples
using functions 3-2
using VQB 2-4

exec 3-8, 3-22, 4-31
executing queries 2-8, 3-8, 3-22, 4-31
exportedkeys 4-33
exporting data

cell arrays 3-17
inserting 3-14, 3-18, 3-25, 4-51
replacing 3-20, 3-21, 4-94

F
feature 1-14
features, new in version two iii
Fetch 4-41
fetch 3-9, 3-36, 4-36
fieldName 4-9
fields

names 4-19
selecting for VQB 2-7
size (width) 3-12, 4-9, 4-98

figure window functions 2-15, 2-18
foreign key information 4-23, 4-33, 4-46
freeing up resources 4-13
functions

alphabetical order 4-8
database metadata object 3-32
driver object 3-35
grouped by category 4-2

G
get 3-17, 3-33, 3-34, 4-39
grouping statements 2-27

removing 2-32

H
Handle 4-40
help

online viii
Visual Query Builder 2-5

HTML documentation viii
HTML report of query results 2-19, 2-20

I
importedkeys 4-46
importing data

using functions 3-6, 3-8, 3-9, 4-36
using VQB 2-7

index for resultset column 4-64
indexinfo 4-49
insert 3-18, 4-51
inserting data into database 3-25
installing Database Toolbox 1-5
Instance 4-40
isconnection 4-54
isdriver 3-33, 4-55
isjdbc 4-56
isNullable 4-43
isnullcolumn 4-57
isReadOnly 4-43
isreadonly 4-59
isurl 4-60

Index

I-5

J
Java Database Connectivity. See JDBC
JDBC

compliance 4-56
connection object 4-40
driver instance 4-40
drivers

names 4-26
supported 1-3
validity 4-55

setting up data source 1-12
SQL conversion to native grammar 4-88
URL 4-26, 4-40

JDBC/ODBC bridge 1-3
join operation in VQB 2-41

L
legend

in chart 2-17
labels in chart 2-17

loading saved queries 2-11
LoginTimeout 3-34, 4-40, 4-42
logintimeout 3-6, 4-61
LogStream 4-42

M
MajorVersion 4-41
MATLAB

version 1-2
workspace variables in VQB 2-8

Message 4-9, 4-40, 4-41

metadata object
database 3-26, 4-28
database functions 3-32
resultset 4-79
resultset functions 3-32

methods 3-4
M-files 3-3
MinorVersion 4-41
multiple entries, selecting 2-7

N
namecolumn 4-64
new features iii
NULL values

function for handling 2-10
preferences for reading and writing 2-10
reading from database 3-22
representation in results 2-9
writing to database 2-10

null values
preferences for reading and writing 4-86

nullable 4-9
NULLvalues

detecting in imported record 4-57
num2cell 3-24, 3-41

O
objects 3-4

creating 3-4
properties, getting 4-39

ObjectType 4-40
ODBC drivers 1-3
online help viii, 2-5
Open Database Connectivity. See ODBC drivers
Operator in VQB 2-25

Index

I-6

ORDER BY Clauses dialog box 2-33
Order by option in VQB 2-32
overloaded functions 3-5

P
parentheses, adding to statements 2-27
password 3-7, 4-26
PDF documentation viii
ping 3-7, 3-17, 4-65
platforms 1-2
precision 4-9
preferences for handling NULL values 2-10
preferences for handling null values 4-86
primary key information 4-23
primarykeys 4-67
privileges

columns 4-17
tables 4-91

procedurecolumns 4-69
procedures 4-71
properties

database metadata object 3-27, 4-89
driver 3-33
getting 4-39
setting 4-80

Q
qry file extension 2-11
queries

accessing values in multiple tables 2-35, 2-41
creating with VQB 2-7
displaying results

as chart 2-16
as report 2-19
in Report Generator 2-20
relationally 2-13

executing 2-8
loading saved queries 2-11
ordering results 2-32
refining 2-23
results 2-8, 3-5, 4-41
running via exec 4-31
saving 2-10
select statement 3-8
viewing results 2-9

querybuilder 2-6, 4-73
querytimeout 4-74

R
ReadOnly 4-40
readOnly 4-9
refining queries 2-23
register 4-75
Relation in VQB 2-24
relational display of query results 2-13
replacing data 3-20, 3-21, 4-94
Report Generator display of query results 2-20
reporting query results 2-19, 2-20
requirements, system 1-2
reserved words 3-15

Index

I-7

results
from query 2-8
viewing 2-9

ResultSet 4-41
resultset

clearing warnings for 4-12
closing 4-13
column name and index 4-64
metadata object 3-32

creating 4-79
properties 4-39

object, functions 4-7
properties 4-39

resultset 4-76
retrieving

data from cell arrays 3-38
data from database 2-7

rollback 4-77
RowLimit 4-36, 4-41, 4-82
rows 3-11, 4-78
rows, uniquely identifying 4-11
rsmd 4-79
running queries 2-8

S
saving queries 2-10
scale 4-9
select statement 3-8
selecting data from database 4-31
selecting multiple entries in VQB 2-7
set 3-34, 4-80
setdbprefs 2-10, 3-22, 4-86
size 3-23, 3-40
size of field 3-12
Sort key number in VQB 2-33
Sort order in VQB 2-33

SQL
commands 1-3
conversion to native grammar 4-88
join in VQB 2-41
statement

executing 4-31
in exec 3-8, 3-21, 4-41
in VQB 2-26

time allowed for query 4-74
where clause 3-21, 4-94

sql2native 4-88
SQLQuery 4-41
starting

Database Toolbox 1-14
Visual Query Builder 1-14

Statement 4-41
status of connection 3-7, 4-65
stored procedures

in catalog or schema 4-71
information 4-69
running 4-32

subqueries in VQB 2-35
Subquery dialog box 2-37
supports 3-29, 4-89
system requirements 1-2

T
TableName 4-43
tableprivileges 4-91
tables

index information 4-49
names 4-92
privileges 4-91
selecting for VQB 2-7
selecting multiple for VQB 2-42

tables 3-31, 4-92

Index

I-8

time
allowed for connection 4-61
allowed for SQL query 4-74

TimeOut 4-40
TransactionIsolation 4-40
tutorial

functions 3-2
Visual Query Builder 2-4

Type 4-41
typeName 4-9
typeValue 4-9
typographical conventions ix

U
undo 3-17
ungrouping statements 2-32
unique occurrences of data 2-22
unregister 4-93
update 3-21, 4-94
URL

JDBC database connection 4-26
validity 4-60

URL 4-40
UserName 4-40
username 3-7, 4-26

V
versioncolumns 4-96
viewing query results 3-36

Visual Query Builder
demo 2-4
examples 2-4
functions 4-7
help 2-5
interface 2-2
main steps for using 2-2
overview 2-2
relationship to Database Toolbox functions

2-3
starting 1-14, 4-73

VQB. See Visual Query Builder

W
Warnings 4-40
warnings, clearing 4-12
where clause 3-21, 4-94
WHERE Clauses dialog box 2-24
Where option in VQB 2-23
width 3-12, 4-98
workspace variables in VQB 2-8

clearing from Data area 2-11
writable 4-40

	Preface
	What Is the Database Toolbox?
	How Databases Connect to MATLAB
	New Features
	Version 2.1
	Version 2

	Features of the Database Toolbox

	Related Products
	Using This Guide
	Expected Background
	Organization of the Document
	Online Help
	Typographical Conventions

	Installation and Setup
	System Requirements
	Platforms
	MATLAB Version
	Databases
	Drivers
	About Drivers for the Database Toolbox

	Structured Query Language (SQL)
	Data Types

	Installing the Database Toolbox
	Setting Up a Data Source
	Setting Up a Local Data Source for ODBC Drivers
	Setting Up a Remote Data Source for ODBC Drivers
	Setting Up a Data Source for JDBC Drivers

	Starting the Database Toolbox

	Visual Query Builder Tutorial
	About the Visual Query Builder
	Visual Query Builder Interface
	When to Use the Visual Query Builder
	When to Use Database Toolbox Functions
	Examples Using the Visual Query Builder
	Example in the Visual Query Builder Demo

	Online Help for the Visual Query Builder

	Starting and Quitting the Visual Query Builder
	Building, Running, and Saving a Query
	Building and Running a Query
	NULL Values
	Using Retrieved Data in MATLAB
	Saving a Query
	Using a Saved Query

	Clearing Variables from the Data Area

	Viewing Query Results
	Relational Display of Data
	Chart Display of Results
	Report Display of Results in a Table
	Display of Results in the Report Generator

	Fine-Tuning Queries Using Advanced Query Options
	Retrieving Unique Occurrences
	Retrieving Information That Meets Specified Criteria
	Grouping Criteria

	Presenting Results in Specified Order
	Creating Subqueries for Values from Multiple Tables
	Creating Queries for Results from Multiple Tables
	Other Features in Advanced Query Options

	Tutorial for Functions
	Introduction
	About Objects and Methods for the Database Toolbox
	Importing Data into MATLAB from a Database
	Viewing Information About the Imported Data
	Exporting Data from MATLAB to a New Record in a Database
	Exporting Data from MATLAB, Replacing Existing Data in a Database
	Exporting Multiple Records from MATLAB
	Accessing Metadata
	Resultset Metadata Object

	Performing Driver Functions
	Working with Cell Arrays in MATLAB
	Viewing Query Results
	Importing Data Using the fetch Function
	Importing Data Using the Visual Query Builder
	Viewing Results Shown as a Matrix

	Retrieving Elements of Query Results
	Retrieving a Single Element
	Retrieving an Entire Column or Row

	Performing Functions on Cell Arrays
	Getting the Size of an Array

	Creating Cell Arrays for Exporting Data from MATLAB
	Enclosing Data in Curly Braces
	Assigning Cell Array Elements
	Converting a Numeric Array to a Cell Array

	Function Reference
	Functions by Category
	General
	Database Connection
	SQL Cursor
	Importing Data into MATLAB from a Database
	Exporting Data from MATLAB to a Database
	Database Metadata Object
	Driver Object
	Drivermanager Object
	Resultset Object
	Resultset Metadata Object
	Visual Query Builder

	Alphabetical List of Functions
	attr
	bestrowid
	clearwarnings
	close
	cols
	columnnames
	columnprivileges
	columns
	commit
	confds
	crossreference
	database
	dmd
	driver
	drivermanager
	exec
	exportedkeys
	fetch
	get
	importedkeys
	indexinfo
	insert
	isconnection
	isdriver
	isjdbc
	isnullcolumn
	isreadonly
	isurl
	logintimeout
	namecolumn
	ping
	primarykeys
	procedurecolumns
	procedures
	querybuilder
	querytimeout
	register
	resultset
	rollback
	rows
	rsmd
	set
	setdbprefs
	sql2native
	supports
	tableprivileges
	tables
	unregister
	update
	versioncolumns
	width

	Index

