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SUMMARY

Rain drop size distribution data obtained from two Joss-Waldvogel disdrometers
located at Locarno-Monti, Switzerland during MAP are analyzed to obtain appropriate Z-
W and Z-R relationships for use in MAP applications.  The disdrometer data are
accumulated into 10 min samples to reduce sampling error associated with the ~1 m3

sample volume of the instrument.  Based on previous studies, relations of the form
W=qZ(4/7)  and Z=aR1.5 are assumed and the coefficients q and a are estimated from the
data.  The combined data set of 10 min samples from the two disdrometers and the 10
min data divided into two independent subsets yielded similar mean values of the
coefficients.  The recommended relationships are W=3.4Z(4/7) and Z=216R1.5 .  The
uncertainties in these mean relationships as expressed in terms of  ±1 standard deviation
are approximately equivalent to a  ±4.4 dBZ error for the Z-W relationship,  and to a  ±2.4
dBZ error for the Z-R relationship.

1. INTRODUCTION

Horizontal maps of near-surface rainfall are important in understanding the water
cycle of a region and in applications such as flood forecasting, fresh water management,
and detection of climate change. Scanning weather radars yield maps of radar reflectivity
(Z) which be used to estimate surface rainfall (R).  The relationship between measured
radar reflectivity and surface rainfall is complex and the estimation procedure is subject
to several independent sources of error (Austin 1987, Joss and Lee 1995). The geometry
of the radar beam leads to the radar’s measurement of reflectivity to be made 100’s to
1000’s of m above the surface. Biases in the estimate of the near-surface reflectivity of
rain can result from the vertical variation of reflectivity in the storm between the
measurement several km above the surface and the surface, errors in radar calibration,
non-meteorological echo such a ground clutter and anomalous propagation, attenuation,
and the presence of non-rain hydrometeors such as graupel, hail, and melting snow.
These potential sources of bias can be removed or minimized by established methods1.
For the purposes of this paper, we will assume that such procedures are utilized. We will

                                                
1 See Joss and Lee (1995), Joss et al. (1998), Vignal et al. (2000), and Germann and Joss (2001) for detailed
discussion of these methods as they are applied by the MeteoSwiss to operational radar data.
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focus on the relatively smaller magnitude biases in the mapping of Z to R (Joss and Lee
1995) associated with variations in the rain drop size distribution (RDSD).

An estimate of three-dimensional liquid water content (W) of a storm volume can
be obtained when radars scan several elevation angles to obtain a three-dimensional
volume of radar reflectivity.  In this context, the liquid water content is more precisely a
rain water content since it does not include cloud drops to which the radar is insensitive.
Volumetric liquid water content derived from radar reflectivity can be useful in the
initiation and validation of numerical models and in studies utilizing aircraft in situ data.
The Z-W estimation procedure has all the sources of error associated with the estimation
of surface rainfall except for the vertical variation in Z since a transformation to near
surface values is not required.

During the Mesoscale Alpine Programme Special Observing Period (MAP-SOP)
(Bougeault et al. 2001), the rain drop size distribution within orographic precipitation was
measured using two disdrometers deployed at the MeteoSwiss Osservatorio Ticinese in
Locarno-Monti, Switzerland.  These data are analyzed to estimate appropriate Z-R and Z-
W relations for the MAP-SOP.

2. DATA

A disdrometer measures drop size distribution by counting the number of drops
within each of several size categories over a time interval. We used two Joss-Waldvogel
disdrometers (Joss and Waldvogel, 1967, Waldvogel 1974) one operated by the
Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre
and one operated by the University of Washington (UW).  The UW instrument was the
standard RD-69/ADA-90 instrument. The DLR instrument combines the RD-69 and a
custom built RDSD analyser. The Joss-Waldvogel disdrometer is an electro-mechanical
instrument.  The momentum of a raindrop falling at its terminal velocity on a styrofoam
cone with area 50 cm² is converted to an electrical impulse. The amplitude of this
impulse is proportional to the diameter of the raindrop. The instruments utilize 20 size
categories to measure drops. Specific size categories are from ~0.3 mm to ~5 mm
diameter for the UW disdrometer and ~0.5 mm to ~5 mm for the DLR disdrometer.
Drops smaller than ~0.3 mm do not produce an impulse sufficiently above the noise
level. Larger raindrops are all grouped into the last of the 20 classes. The mean diameter
of this 20th size category representing the drops larger than a particular size has the
largest uncertainty compared to the other 19 size categories which have both minimum
and maximum diameter limits. The size categories for the DLR disdrometer were
calibrated by measuring the transfer function of the signal processing electronics
(Sheppard 1990). The UW disdrometer used the factory calibration and standard diameter
categories supplied by the instrument manufacturer, Distromet Inc.

At higher rain rates, the detection efficiency for small drops in the Joss-
Waldvogel disdrometer is reduced compared to at lower rain rates due to the generation
of environmental noise by the rain itself. Environmental noise and man-made noise, when
present, increase the noise level in the instrument below which drops cannot be detected
(Joss and Gori 1976).
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A short “dead-time” is built into the instrument so that splashes associated with
the impact of a large drop on the sensor are not counted as small drops within the RDSD.
However, during this dead-time, neither splash products nor actual drops in the RDSD
are measured. In order to account for the drops in the RDSD that were missed, a dead-
time correction which is a function of the number and size of drops counted by the
instrument is applied (Sheppard and Joe 1994). The dead-time corrections’s main effect
is to increase the number of small drops within the distribution since small drops are
more numerous than larger drops and hence more likely to fall within the short dead-time
period. The dead-time correction is designed to correct within ±10% for both drops
missed during the dead time of the instrument and environmental noise due to rain (Joss
and Gori 1976). The correction is not designed to account for missed drops due to an
increase in the noise floor as a result of man-made noise or drops not hitting the
instrument because of wind effects (Folland 1988).

As a data quality check, both disdrometers were compared to a nearby
MeteoSwiss rain gauge. Table 1 shows the daily rainfall accumulations computed from
the MeteoSwiss rain gauge and the two disdrometers.  A total of 862 mm was recorded
by the rain gauge between 20 Sept. and 19 Nov. 1999. Overall, the instruments agreed
well. Rain accumulations for both disdrometers were within 10% of the rain gauge for all
days with rainfall over 10 mm. For the four days with less than < 1 mm rainfall measured
by the disdrometers, the difference among the instruments was less than 0.2 mm. The
measurement accuracy of the MeteoSwiss rain gauge is 0.1 mm corresponding to the
rainfall associated with a single tip of this tipping-bucket type gauge. On 18 November,
the disdrometer observed rain rates never exceeded 0.2 mm h-1 so these data were
removed from the processed data set (Section 3d). The discrepancies among the
instruments on 22 October and 3 November are still under investigation, but likely have
some contribution from the 0.2 mm h-1 rain rate threshold applied to the disdrometer data.
The incomplete records on the UW disdrometer were the result of a computer rather than
an instrument problem.

3. METHODOLOGY

The analysis of RDSD data collected by disdrometer must take into account the
degree of representivity of the measurements in terms of their location and scale, and
address statistical sampling error.

(a) Representivity of location

  Locarno-Monti was within the Laggio-Maggiore Target Area (LMTA) of
focussed observations designed to address the precipitation-related objectives of MAP
(Bougeault et al. 2001) and is near a climatological local maxima of heavy precipitation
in the southern Alps (Frei and Schär 1998).  Locarno-Monti received 30 days of rainfall
during the period 20 September–18 November 1999 within a variety of synoptic
conditions (Bougeault et al. 2001) and was near the center of the maximum rainfall
accumulation during the MAP IOP2b event on 19-20 September 1999 (Rotunno and
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Ferretti 2002). The details of the rainfall distribution varied within the LMTA so one
location cannot be exactly representative of other locations within the LMTA or the
LMTA area mean.    

(b) Representivity of spatial scale

The spatial scale of the recorded 1 min disdrometer measurements is order 1 m3.
The spatial scale of the radar measurements to which they are intended to be applied is
~1 km3.  The order 109 difference in spatial scales is staggeringly large. It would take
over 1902 years for a single disdrometer to measure a volume of atmosphere equivalent
to a typical individual radar resolution volume. To date, all in situ measurements of the
RDSD either via aircraft particle probes or surface-based disdrometers have had a
sampling volume of 10 m3 or less. Without instantaneous in situ observations at larger
scales, it has been difficult to assess how well the variability of the RDSD in time
represents its variability in space or how well averaging in time represents averaging in
space.

Joss and Gori (1978) examined the characteristics of the RDSD over increasing
time periods within two storms at Locarno-Monti and found that after several hundred
minutes the characteristics of the RDSD tended to converge toward an exponential
distribution. A single instrument sample over 100’s of minutes in duration is obtained
within several different portions of the storm and is possibly a result of several different
precipitation processes. Joss and Gori (1978) recognized this limitation. They concluded
that "true exponential distributions are obtained when adding many 1 min samples of
different rain intensity". Joss and Gori also found that the rate of change of the RDSD
shape was not constant but varied approximately with the natural logarithm of the
accumulation time. For example, the relative difference in average shape of the RDSD
between samples for 1 min and 10 min accumulations was larger than between samples
for 11 min and 20 min accumulations. In their examination of the degree of uniformity of
precipitation processes, Kostinski and Jameson (1997) analyzed disdrometer time series
data and found ~10 min duration rain "patches" with a similar number of drops of a given
size per minute.  They described the RDSD at larger scales that would incorporate
multiple rain "patches" as mixtures of Poisson distributions (Jameson and Kostinski
2001).

(c) Sampling error

Smith et al. (1993) modeled sampling errors in a normalized exponential RDSD
as a means to assess the relative contributions of sampling uncertainties versus natural
inhomogenities to the apparent variability of in situ RDSD measurements. They found a
consistent low bias in estimates of  R and Z that decreased as the total number of drops in
the sample increased. The low bias is a result of the mismatch between the typical
measurement sample volume of 1 m3 and the average concentration of larger drops in the
sample which is often less than 1 per 1 m3. For example, for an average concentration of
4 mm diameter drops of 1 drop per 100 m3, on average 99 of 100 1 min samples will not
register a drop 4 mm in size . Without the large drop, the 99 samples will have a low bias
in R and a slightly larger low bias in Z because of the ~D4 compared to D6 weighting. The
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one sample with the 4 mm drop will have high biases in R and Z, but when averaged with
the other 99 samples, the mean bias will be still be low. This type of sampling bias
associated with an exponential-type distribution where significant contributions to R and
Z can come from low concentrations of large drops is in addition to the Poisson
uncertainty which is based on the number of drops measured.

(d) Processing procedure

To process the disdrometer data to reduce uncertainties we have to compromise
between two conflicting constraints. To reduce sampling error we should increase the
number of drops by increasing the sampling accumulation time. To reduce errors
associated with mixing samples representing distinct precipitation processes we should
keep the sampling time small. As a compromise between these two constraints, we have
chosen a 10 min accumulated RDSD as the basis of our analysis and a 60 min
accumulated RDSD for comparison. A 10 min accumulation period allows us to reduce
but not eliminate sampling errors. A 60 min accumulation period permits us to reduce
sampling error further but at the expense of mixing rain patches. Since we are comparing
data obtained from two instruments, we have the additional constraint that we would like
to compare the same time periods, e.g. 01:00:00-01:09:59. This latter constraint means
that sometimes we will include minutes within the 10 minute period where an individual
instrument did not measure any drops2. A time period is considered rainy if at least 80%
of the 1 min measurements within the period had drops. In processing the data, we have
removed 1 min measurements with less than 20 raw drop counts (not dead-time
corrected) which usually correspond to non-precipitation triggers such as wind hits and
insects. We have also applied a minimum rain rate threshold 0.2 mm h-1 to remove
accumulated samples prone to large sampling errors.

Radar reflectivity (assuming Rayleigh scattering), liquid water content, and rain
rate were calculated from the dead-time corrected RDSD (N(D) in units of # per m3 per
mm) as follows.
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For each of the 20 size categories, Di is the mean diameter of the size category in mm,
and ∆Di is the width of the size category in mm. The units of Z are mm6 m-3, W are

                                                
2 This processing method differs from other methods where consecutive rainy minutes are processed into
10 min accumulated samples.
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mm3m-3 and for R are mm h-1 . The particle fall speed (V ) is a function of diameter,
temperature, and pressure (Berry and Pranger 1974) and is in units of m s-1.

For our analysis we used several versions of the disdrometer data, the union of the
10 min accumulated DLR and UW data (combo10), and the union of the 60 min
accumulated DLR and UW data (combo60). Table 2a show statistics for the full DLR and
UW  10 min and 60 min data sets separately. Additionally, two independent subsets
(timeA10 and timeB10) were obtained by dividing the combo10 data by time (before and
after 2230 UTC 22 October 1999) to yield data sets each with 1370 samples (Table 2b).
Although the time periods for timeA10 and timeB10 are identical in length, the
precipitation was not distributed evenly through the MAP-SOP and timeA10 had a total
rainfall accumulation of 1113 mm compared to timeB10’s accumulation of 452 mm
(Table 2b). By definition the sum (within roundoff error) of the rainfall accumulations for
timeA10 and timeB10 is equal to the sum of the rainfall accumulations for the DLR and
UW 10 min data sets (i.e. combo10). The effect of the dead-time of the instrument is
evident in the smaller number of drops counted at higher rain rates. At least half of the
rain accumulation was obtained within rain rates < 10 mm h-1. The 60 min data has
similar total accumulations but lower average rain rates compared to the 10 min data as is
expected given the roughly lognormal distribution of 1 min rain rates (Table 2a).

4. ANALYSIS

(a) Characteristics of samples from the two disdrometers

The calculated Z versus calculated R values for the accumulated 10 min samples
from both disdrometers are shown in Figure 1.  The points from both disdrometers are
scattered relatively evenly throughout the plot indicating that the data from the two
disdrometers likely represent two different samples from the same parent population.
Overall there is a large scatter of up to 10 dBZ for a given rain rate with some portion of
the scatter related to sampling error associated with the small sample volumes (Section
2c) and the remaining portion due to natural variability.

To determine if the DLR and UW data sets have a relative bias between the two
instruments, the subset of data from each instrument corresponding to the time when both
recorded rainfall was examined (DLRoverlap10 and UWoverlap10) corresponding to
1243 10 min samples from each. The frequency distributions of Z and log10(R) (Figs. 2
and 3) are very similar overall as are the statistics in Table 3. Given sampling errors and
the small spatial scale variability of rainfall (Habib and Krajewski, 2002), we do not
expect instruments a few meters apart to obtain identical samples. The difference in
rainfall accumulation between the two instruments is less than 2 % (Table 3). While there
are slight differences between the DLR and UW subsets, there is no significant relative
bias between them.  We conclude that it is reasonable to combine the data from both
instruments in our analysis.
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(b)  Calculation of Z-W and Z-R relations

The methods of calculating Z-R and Z-W relations from measured RDSD are
almost as numerous as the number of papers that treat this subject. The resulting
relationship can be very sensitive not only to the input data but also to the method by
which it was calculated (Campos and Zawadzki 2000).

(i) Z-W.  For the Z-W relations, we use a quadratic equation of the form W=qZ4/7

(Kessler 1969, Smith et al. 1975) which simplifies into the linear equation:

log10(W)=log10(q)+(4/7)log10(Z) [4]

The exponent 4/7 in the Z-W relation is obtained as follows. The RDSD is
approximated as an exponential distribution, dDeNDN D

o
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Setting s=4/7 will cancel the Λ terms and remove the direct dependency of q on
W. Following Doelling et al.’s (1998) methodology for determining Z-R, we determine a
value of q for each sample of  the population using q=W/(Z4/7) .

The plot of log10(q) versus log10(W) (Fig. 4a) illustrates that log10(q) values are
uncorrelated with W and vary between approximately 0.3 to 30 q units.  The sloping
lower edge of the cloud of points is an artifact of the thresholding of the processed data
on 0.2 mm h-1 rain rate. Lines of constant rain rate are roughly parallel to the lower right
edge. The narrower distribution of q values for higher rain rates is expected since the
higher rain rate samples have a larger number of drops and less statistical sampling error
than the lighter rain rate samples (see Section 3 and Table 2). The distribution of q is
approximately lognormal (Fig. 4b) and the distribution of log10(q) for this data set is
close to Gaussian (Fig. 4c). A Gaussian distribution of log10(q) is not generally true,
especially for smaller sample sizes. We use the mean3 log10(q) value to obtain the best
estimate and ± 1 standard deviation (σ) of log10(q) as an assessment of the uncertainty
(Table 4). The bottom half of Table 4 shows the equivalent values in q units. Since  ± 1
standard deviation of log10(q) is not symmetric in q, we have indicated –σ as the 16th
percentile and +σ as the 84th percentile.  Figure 4d and the biases in Table 4 provide
information on how well [4] estimates liquid water content from Z compared to liquid
water content calculated from the RDSD in [2]. Cumulative bias is
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spread of points around the 1:1 line  in Figure 4d is wide, there is no bias to the
                                                
3 Doelling et al. (1998) used the median rather than the mean of log10(q).
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cumulative estimate based on [4].  Individual estimates of W for dependent data will have
an average positive bias of 15-18%. The difference in the mean values between the

combo10 and combo60 data is larger than the standard error of the mean ( N/σ ) but its
physical significance is difficult to assess. The shift in the combo60 mean value of q
toward lower values is consistent with a reduction in the low bias of calculated Z relative
to W associated with a smaller sampling error. The combo60 data set has the positive
aspect of having a smaller sampling error in each sample but it has the negative aspects of
smaller total number of samples and larger errors associated with mixing rain patches
compared to combo10.  Also, short duration rain events lasting less than 48 min in a
given hour are not included in the combo60 data set.  A much larger data set than
obtained during MAP would be needed to be able to quantify the relative contributions of
these sources of uncertainty to the difference in mean q between the combo10 and
combo60 data sets.

(ii) Z-R. Calculation of rain rate requires particle fall speed V(D,T,P) (see [3]). For
surface based disdrometer data, the vertical air velocity is assumed to be zero, and air
density, T,  and P, are treated as constants (here we use T = 20°C, P = 1013.25 hPa). For
radar measurements and in situ data obtained by aircraft, these physical assumptions are
not valid and can lead to errors in estimated fall speed and hence rain rate (Dotzek and
Beheng 2001). We cannot parallel the methodology used to obtain an equation for Z-W,
as expressions for fall speed (Berry and Pranger 1974) that closely match empirical data
do not have a simple functional form amenable to a definite integral solution for R. For
the Z-R relation4, we assume a quadratic equation of the form Z=aR1.5 which simplies to
the linear equation:

log10(Z)=log10(a)+(1.5)log10(R) [6]

The fixed exponent of 1.5 for the Z-R relation was originally proposed by Smith
and Joss (1997) based on empirical studies and has been tested with multi-year samples
of disdrometer data by Doelling et al. (1998) and Steiner and Smith (2000).

The values of the coefficient a as a function of rain rate for each of the 10 min
samples in combo10 are shown in Figure 5a.  If there were distinct a values for lighter
versus heavier precipitation, it would manifest in the scatter plot as discernably different
populations of points as a function of R.  Instead, we have one widely scattered
population of a values centered roughly between log(a) of 2 to 2.7.  As in Figure 4a, there
is a narrower distribution of a values for higher rain rates >5 mm h-1 compared to <5 mm
h-1 since the higher rain rate samples have less statistical sampling error.

Similar to the characteristics of the distribution of q, the distributions of a is
approximately lognormal (Fig. 5b) while log10(a) is roughly normal (Fig. 5c).
Similar to the procedure used to obtain the Z-W relation, we compute the mean value and
standard deviation of log10(a) and their equivalent values in a  (Table 5). The resulting
                                                
4 Although we are interested in obtaining a relation to transform observed Z into estimated R, and use Z as
the independent variable in our computations, we will follow the convention of describing this relation in
terms of Z=aRb so that our  results can be more readily compared to those reported by other investigators.
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relationships are Z = 216R1.5 for combo10 (Fig. 1) and for Z = 268R1.5 for combo60.
Again, the statistics for the combo60 data are shifted toward higher a values which is
consistent with a reduction in the low bias of calculated Z relative to calculated R
associated with a smaller sampling error. The fall velocity factor in R likely has a
compensating effect for some types of errors as the  biases in Table 5 are slightly smaller
than in Table 4 such that an individual estimate of R for dependent data will have an
average positive bias of ~10%.

The mean log10(a) Z-R relations for the overlapping time period of the two
disdrometers are Z = 219R1.5 for DLRoverlap10  and Z = 205R1.5 for UWoverlap10
(Fig.1). Linear regression of these two data sets results in Z-R relations of Z = 221R1.48

(DLRoverlap10) and Z = 214R1.42 (UWoverlap10). Therefore, for the disdrometer data
obtained during the MAP-SOP the assumption of 1.5 as the exponent in the Z-R relation
is reasonable.

Another method of estimating the a value is to use its rain-rate-weighted median
rather than its arithmetic mean. Samples contributing more to the rainfall accumulation
are weighted heavier yielding an estimate of a which will have smaller errors when used
in applications to estimate rainfall accumulations but  larger errors in applications to
estimate individual rain rates.  To estimate the best rain-rate-weighted a value, the
distribution of log10(a) is sorted by increasing rain rate and the median value is
determined. This rain-rate-weighted median method yields Z =215R1.5 for combo10
which is nearly identical to the arithmetic mean value of  Z =216R1.5 for the non-
weighted data (Table 5). For the combo60 data, the rain-rate-weighted median method
yields Z =255R1.5. The difference between the combo60 rain-rate-weighted median (Z
=255R1.5) and non-weighted mean relations (Z =268R1.5 from Table 5) corresponds to
only a 0.2 dBZ difference for a given R.

(c) Uncertainties and their impact

A recommendation to use a particular Z-W or Z-R relation is not truly complete
without information on how well the suggested relations perform on independent data.
The nature of errors associated with these relations makes sample size particularly
important and it is not uncommon for the entire available data set to be used to estimate
the Z-W or Z-R relation even in multi-year data sets (e.g. Doelling et al. 1998, Steiner and
Smith 2000).  The quality of the relation may be lowered if the sample size is reduced
below some critical value.  Unfortunately, having used all the data to obtain our best
estimate we have no independent data with which to test it.

We address the uncertainty associated with our methodology by examining two
independent data sets (timeA10 and timeB10) based on storms sampled before and after
2230 UTC 22 October 1999 at Locarno-Monti. This calculation is equivalent to assuming
that the rainy portion of the MAP-SOP was half as long and applying the Z-W and Z-R
relations obtained in one half to the independent data collected in the other half.   The
mean coefficients vary slightly for the Z-W (Table 4) and for Z-R (Table 5) compared to
the combo10 data set as a whole.  Application of the relations derived for one half of the
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data to the Z data obtained in the other half yields cumulative biases of net liquid water
content and rainfall of 94% and 113% for the Z-W relations and 101% and 110% for the
Z-R relations.

By definition, 68.27% of the samples in the population fall within ±σ. The impact
of applying the relations corresponding to the ±σ  q and a values are shown in Tables 6
and 7. For comparison,  the typical error in R associated with not correcting for the
variation of the profile of reflectivity between the lowest radar measurement and the
ground is 3 dB (factor of 2) in the Alps (Germann and Joss 2002).

5. CONCLUSIONS

Rain drop size distribution data obtained from two Joss-Waldvogel disdrometers
deployed at Locarno-Monti during MAP were analyzed to yield recommended Z-W and
Z-R relations and their uncertainties. Disdrometer data were accumulated into 10 min and
60 min samples to reduce, but not eliminate, sampling errors which usually manifest as a
low bias in R and a lower bias in Z (Smith et al. 1993).

For the majority of radar data obtained during MAP without dual polarization, Z-
W and Z-R relations provide a method to estimate volumetric liquid water content and
rain rate from observed radar reflectivity.  Despite the large uncertainties, the
recommended relations may be useful to map radar reflectivity into a form that can be
qualitatively compared to other estimates of liquid water content and rain rate. An
advantage of the Z-W and Z-R  relationships over dual polarization methods (Bringi and
Chandrasekar, 2001) is that they can be applied to radar echo regions where the
reflectivities are weak and the dual polarization signal is noisy. A disadvantage of Z-W
and Z-R methods is that they can yield large errors when they are mistakenly applied to
regions which contain hydrometeors other than rain (e.g. the melting layer or regions
containing snow,  hail, or graupel). Large errors can also result when these relations are
applied to reflectivities which have not been corrected for common sources of bias
(Section 1).

Empirical relations between radar reflectivity and the liquid water content do not
appear frequently in the literature despite their utility for comparison with aircraft in situ
data and numerical model output and their relative simplicity compared to a Z-R relation.
Our recommended relationship of W=3.4Z(4/7) is valid for the rain drop portion of the
liquid water content where the drops are > 0.2 mm diameter. Battan (1973) ennumerates
69 Z-R relations but only one Z-W relation for rain, W=3.9Z0.55 reported by Douglas
(1964).  Sekhon and Srivastava (1971) report a Z-W relation of W=0.98Z0.70 obtained
from rain drop spectra inferred from vertically pointing Doppler radar measurements in a
thunderstorm.  Rain drop spectra derived from vertically-pointing Doppler data are
subject to spectral broadening from turbulence (Joss and Dyer 1972) so Sekhon and
Srivastava’s Z-W relation is not directly comparable to one obtained from in situ data.

The combined 10 min accumulation (combo10) disdrometer data set mean
relation of Z=216R1.5 is bracketed by a lower bound of Z=112R1.5 and an upper bound of
Z=418R1.5.  These bounds encompass the 60 min accumulation (combo60) mean
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relationship and all the Z-R relations used by the national weather services within the
MAP-SOP domain--Austria, France, and Italy Z=200R1.6 (Marshall and Palmer 1948),
Germany Z=256R1.42 (Aniol et al., 1980), and Switzerland Z=316R1.5 (Joss et al., 1998).
A 5 dBZ difference will translate into a 105%, 125%, 115%, and 115% difference in R
for the Marshall and Palmer, Anoil et al., Joss et al. and MAP Z-R relations respectively.

The maximum difference in the mean coefficients in the Z-R relation of 215 to
268 corresponds to only slightly more than 1 dBZ difference (Table 5). Errors in 30 day
rainfall accumulation due to mean RDSD variations in independent data are within 10%
(Table 5) while uncertainty based on ± σ in individual rain rates can be 64%-155%
(Table 7). The uncertainty in the Z-W relation in terms of ± σ  (Table 6) is larger (56%-
176%) than in the Z-R relation. Although uncomfortably large for some applications, the
relative sizes of these errors are smaller or comparable to several other known error
sources in rainfall mapping from radar data and emphasize the importance of correcting
overall biases with proper radar calibration and biases as a function of range using
procedures to account for the variations in the vertical profile of precipitation from the
height of radar measurement to the ground (Joss and Lee 1995, Dotzek and Beheng 2001,
Germann and Joss 2002).

Our recommended Z-W and Z-R relationships for the LMTA would be slightly
different if the disdrometer data had been obtained at a location within the LMTA other
than Locarno-Monti or if the MAP-SOP had been scheduled to start a few days later, a
few days earlier, or in a different year.  Differences in data processing, whether a mean,
median value, or weighted median is used as the population estimate, and which subsets
of the data are examined can yield variations in value of the coefficients in the Z-W and
Z-R relations with little physical significance (Tables 3, 4, and 5). Our goal was to obtain
a relation that will work well on average for data obtained within the LMTA during the
MAP-SOP.  We did not produce relations for each IOP since these would only have value
if we could also show that the relationship between rainfall at Locarno-Monti compared
to other areas within the LMTA was similar among IOPs.  Rainfall maps derived from
rain gauge data show large variability in the spatial distribution of rainfall in the LMTA
among IOPs so this is unlikely to be the case.

If there were a strong relation between the coefficient values in the Z-W and Z-R
relations and distinct precipitation processes such as precipitation growth by accretion of
cloud liquid water versus growth by vapor deposition these would manifest as
discernably distinct populations in the scatter plots in Figures 4a and 5a.  In particular one
would expect a distinction between heavy rain > ~10 mm hr-1 which is primarily a result
of accretional processes versus lighter rain which can be a result of a variety of
precipitation processes.  When the combo10 data are divided into subsets corresponding
to samples with rain rate > 10 mm hr-1 and ≤ 10 mm hr-1, the mean coefficients for the Z-
R relation are 219 and 216 respectively. The absence of distinct populations in the scatter
plots indicates that either different precipitation processes occurring at Locarno-Monti
during MAP do not have strong and distinctly different signals in the coefficients of Z-W
and Z-R or that one precipitation process dominates the samples in both heavier and
ligher rain.
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 Since it is unlikely that variations in RDSD follow national boundaries, it would
be useful to create a merged rainfall product based on quality controlled radar data for the
MAP domain using a single Z-R relationship. From a qualitative standpoint, the exact
relation used is not critical as all the national weather service relations are within one
standard deviation of the recommended MAP relation.  As errors in rain rate at a
particular point estimated from radar data are can be large (Fig. 5d, Table 7),
comparisons between radar-derived rainfall and other data sets and numerical models are
best done using areal averages or storm accumulations.
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Table 1. Daily sums of precipitation measured with the rain gauge and the two
disdrometers. A “Y”  mark indicates days where the disdrometer is within 10% of the
daily rainfall measured with the gauge. Accumulations are indicated for the full set of
processed data obtained from each instrument and for the subset corresponding to the
complete days for all three instruments.

Date Gauge
(mm)

DLR
(mm)

DLR
within 10%

UW
(mm)

UW
within 10 %

20 Sep 99 92.0 97.7 Y 43.8 incomplete
21 Sep 99 46.0 44.1 Y 42.8 Y
25 Sep 99 87.6 84.4 Y 88.4 Y
26 Sep 99 130.5 126.4 Y 73.2 incomplete
27 Sep 99 30.0 31.9 Y 30.9 Y
28 Sep 99 65.9 62.1 Y 62.0 Y
30 Sep 99 21.6 21.3 Y 21.7 Y
02 Oct 99 17.7 18.1 Y 19.0 Y
03 Oct 99 64.7 61.6 Y 61.7 Y
17 Oct 99 0.0 0.2 0.2
18 Oct 99 0.6 0.8 0.8
19 Oct 99 0.7 0.8 0.9
20 Oct 99 13.6 13.0 Y 13.7 Y
21 Oct 99 53.9 50.0 Y 36.5 incomplete
22 Oct 99 6.2 4.8 7.1
23 Oct 99 47.8 45.1 Y 46.7 Y
24 Oct 99 40.7 38.9 Y 42.5 Y
25 Oct 99 17.8 17.8 Y 18.6 Y
26 Oct 99 0.3 0.3 Y 0.3 Y
30 Oct 99 1.0 1.0 Y 1.1 Y
03 Nov 99 5.9 4.9 5.2
04 Nov 99 29.2 26.4 Y 27.2 Y
05 Nov 99 1.2 1.3 1.3 Y
06 Nov 99 50.5 47.5 Y 49.8 Y
10 Nov 99 0.0 0.1 0.1
11 Nov 99 18.1 17.9 Y 18.3 Y
14 Nov 99 6.8 6.5 Y 6.6 Y
15 Nov 99 2.9 2.9 Y 3.2 Y
17 Nov 99 8.0 7.9 Y 7.9 Y
18 Nov 99 0.7 0.0 0.0

Total 861.9 835.6 731.2
Complete
Days Total

585.5 561.5 577.8
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Table 2a. RDSD data sample statistics for the full DLR and UW 10 min and 60 min data
sets. The total accumulation and average rain rates are calculated after the dead-time
correction is applied. The UW data had sporadic dropouts due to a computer problem so
the time periods of the DLR and UW data do not match exactly and, as a result, the
statistics for the full data sets are not expected to match.  The full DLR and UW 10 min
data sets are combined to yield the combo10 data set and the 60 min data are combined to
yield the combo60 data set.

Drop Counts per
Sample (as measured,
no dead-time correction)

Description Rain rate
category

# Samples Total
Accum
 (mm)

Aver.
Rain rate
(mm h-1)

min mean max
DLR 10 min All 1432 835 3.5 116 3445 12601

R < 1 504 44 0.5 116 1735 6998
1 ≤ R < 5 674 265 2.4 255 3912 12601
5 ≤ R 10 138 157 6.8 1425 5147 10502
10 ≤ R < 50 112 326 17.5 1192 6088 9580
R ≥ 50 4 43 64 7140 7658 8120

UW 10 min All 1310 731 3.3 128 4075 17566
R < 1 487 43 0.5 128 2238 9828
1 ≤ R < 5 607 244 2.4 315 4561 17555
5 ≤ R 10 113 131 6.9 1533 6245 12068
10 ≤ R < 50 100 286 17.1 2485 7431 11228
R ≥ 50 3 28 56.1 9662 10158 10905

DLR 60 min All 269 831 3.1 735 18306 61638
R < 1 82 42 0.5 735 8818 29364
1 ≤ R < 5 144 334 2.3 2883 20674 61638
5 ≤ R< 10 25 174 7 6298 23445 46477
10 ≤ R < 50 18 281 15.6 17018 35447 49893
R ≥ 50 0 - - - - -

UW 60 min All 245 729 3.0 1930 21807 96483
R < 1 80 40 0.5 1930 12053 44142
1 ≤ R < 5 127 297 2.3 6299 23641 96483
5 ≤ R< 10 22 145 6.6 11150 31235 55131
10 ≤ R < 50 16 247 15.5 23127 43048 62608
R ≥ 50 0 - - - - -
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Table 2b. As in Table 2a expect for timeA10 and timeB10 subsets of combo10.
Drop Counts per
Sample (as measured,
no dead-time correction)

Description Rain rate
category

# Samples Total
Accum
 (mm)

Aver.
Rain rate
(mm h-1)

min mean max
timeA10 All 1370 1113 4.9 116 3817 14141

R < 1 412 36 0.5 116 2008 9828
1 ≤ R < 5 583 239 2.5 255 3697 14141
5 ≤ R< 10 174 202 7 1425 5224 12068
10 ≤ R < 50 194 565 17.5 1192 6579 11114
R ≥ 50 7 71 60.6 7140 8729 10905

timeB10 All 1370 452 2.0 119 3679 17566
R < 1 577 50 0.5 119 1966 8372
1 ≤ R < 5 698 270 2.3 612 4656 17566
5 ≤ R< 10 77 85 6.6 2122 6584 11457
10 ≤ R < 50 18 47 15.6 3874 8257 11228
R ≥ 50 - - - - - -

Table 3.  Comparison of statistics between DLR and UW 10 min accumulation data sets
during subset of time (207.2 hours) when both instruments recorded rain rates > 0.2
mm h-1.  σ is standard deviation.

Statistic DLRoverlap10 UWoverlap10
Min 0.2 0.2
1st Quartile 0.7 0.7
Median 1.6 1.6
Mean 3.4 3.5
σ 5.5 5.5
3rd Quartile 3.7 3.8

Rain rate
(mm h-1)

Max 61.8 60.5
Rain Accumulation (mm) 710 723

Min 7.5 8.7
1st Quartile 21.1 20.8
Median 26.3 26.4
Mean 26.7 26.8
σ 8.0 7.6
3rd Quartile 31.6 32.1

Reflectivity
(dBZ)

Max 51.1 52.1
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Table 4. Estimates of coefficient q and its uncertainties and biases in
log10(W)=log10(q)+(4/7)log10(Z) and W=qZ4/7. σ is standard deviation, r2 is ratio of
explained variation to total variation (coefficient of determination).

combo10 combo60 timeA10 timeB10
mean 0.529 0.460 0.517 0.540
σ 0.25 0.23 0.25 0.26
median 0.527 0.458 0.536 0.517
r2 1.05 1.09 1.09 0.97
cumulative bias 1.00 1.0 1.0 1.0

log10(q)

average bias 1.01 1.01 1.01 1.01
mean 3.4 2.9 3.3 3.5
16th percentile 1.9 1.7 1.9 1.9
84th percentile 6 4.9 5.8 6.2
r2 1.05 1.09 1.09 0.97
cumulative bias 1.05 1.05 1.07 0.99

q

average bias 1.18 1.16 1.19 1.18

Table 5. Estimates of coefficient a and its uncertainties and biases in
log10(Z)=log10(a)+(1.5)log10(R) and Z=aR1.5. Values of log10(R)=0 are removed from the
data set in the calculation of average bias.

combo10 combo60 timeA10 timeB10
mean 2.335 2.428 2.340 2.332
σ 0.29 0.27 0.29 0.29
median 2.332 2.427 2.309 2.355
r2 1.09 1.11 1.1 1.08
cumulative bias 1.0 1.0 1.0 0.99

log10(a)

average bias 1.0 0.89 0.98 1.01
mean 216 268 219 215
16th percentile 112 144 113 111
84th percentile 418 499 424 417
r2 1.09 1.11 1.10 1.08
cumulative bias 1.07 1.06 1.08 1.03

a

average bias 1.1 1.09 1.11 1.09
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Table 6. Impact of ± standard deviation in coefficient q in W=qR4/7 compared to
combo10 mean value of 3.4.
Coefficient q value 1.9 3.4 6
% difference in W
estimated from Z

56% 100% 176%

Difference in dBZ
estimated from W

-4.4 0 4.3

Table 7. Impact of ± standard deviation in coefficient a in Z=aR1.5 compared to combo10
mean value of 216.
Coefficient a value 112 216 418
% difference in R
estimated from Z

155% 100% 64%

Difference in dBZ
estimated from R

2.3 0 -2.4
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Figure Captions

Figure 1. Plot of calculated Z versus calculated R from 10 minute accumulated DLR and
UW disdrometer RDSD samples. Solid line indicates Z-R relation based on mean
coefficient a values for combo10 data set, Z=216R1.5 . Dotted line indicates Z-R relation
for DLRoverlap10 subset of Z=219R1.5 , and dashed line indicates Z-R relation for
UWoverlap10 subset of Z=205R1.5 .

Figure 2. Frequency distribution of calculated Z values for DLRoverlap10 and
UWoverlap10 corresponding 10 min accumulations during subset of observation period
when both instruments recorded rain rates > 0.2 mm h-1.

Figure 3. Frequency distribution of calculated R values for DLRoverlap10 and
UWoverlap10 corresponding 10 min accumulations during subset of observation period
when both instruments recorded rain rates > 0.2 mm h-1.

Figure 4. a) Plot of RDSD calculated liquid water content versus coefficient q in
W=qZ(4/7). b) Frequency distribution of q, c) Frequency distribution of log10(q), d) Plot
of RDSD calculated W versus estimated W using W=3.4Z(4/7) and calculated Z. Plots are
based on combo10 data set.

Figure 5. a) Plot of RDSD calculated rain rate versus coefficient a in Z=aR(1.5). b)
Frequency distribution of a, c) Frequency distribution of log10(a), d) Plot of RDSD
calculated R versus estimated R using Z=216R1.5 and calculated Z. Plots are based on
combo10 dataset.
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 Figure 1. Plot of calculated Z versus calculated R from 10 minute accumulated DLR and
UW disdrometer RDSD samples. Solid line indicates Z-R relation based on mean
coefficient a values for combo10 data set, Z=216R1.5 . Dotted line indicates Z-R relation
for DLRoverlap10 subset of Z=219R1.5 , and dashed line indicates Z-R relation for
UWoverlap10 subset of Z=205R1.5 .
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 Figure 2. Frequency distribution of calculated Z values for DLRoverlap10 and
UWoverlap10 corresponding 10 min accumulations during subset of observation period
when both instruments recorded rain rates > 0.2 mm h-1.
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 Figure 3. Frequency distribution of calculated R values for DLRoverlap10 and
UWoverlap10 corresponding 10 min accumulations during subset of observation period
when both instruments recorded rain rates > 0.2 mm h-1.
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 Figure 4. a) Plot of RDSD calculated liquid water content versus coefficient q in
W=qZ(4/7). b) Frequency distribution of q, c) Frequency distribution of log10(q), d) Plot
of RDSD calculated W versus estimated W using W=3.4Z(4/7) and calculated Z. Plots are
based on combo10 data set.

log10(q)

L
W

C

-0.5 0.0 0.5 1.0 1.5

10
50

50
0

0 5 10 15 20 25

GH
GI
G J
GK
G
LH
G

q

n
um

b
er

 o
f 

sa
m

p
le

s

-0.5 0.0 0.5 1.0 1.5

0
20

40
60

80
10

0

log10(q)

n
um

b
er

 o
f 

sa
m

p
le

s

Calculated LWC

E
st

im
at

ed
 L

W
C

10 50 100 500 1000

10
50

50
0

50
00

a) b)

c)
d)

MN
N



25

 Figure 5. a) Plot of RDSD calculated rain rate versus coefficient a in Z=aR(1.5). b)
Frequency distribution of a, c) Frequency distribution of log10(a), d) Plot of RDSD
calculated R versus estimated R using Z=216R1.5 and calculated Z. Plots are based on
combo10 dataset.
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