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Abstract

Effects of deep convection on the precipitation rate R leading to variations in radar meteoro-

logical Z–R relations are studied. The basic contributions to this subject come from vertical and

horizontal air motions as well as decreasing air density with height. Their influence on Z–R

relations is investigated both with an analytical approach from cloud microphysics distinguishing

between two characteristic spectral forms, and a mesoscale bulk model case study of a single

cumulonimbus cloud. The precipitation rate is strongly affected by deep convective motions

leading to increased mean value and standard deviation of the prefactor a in Z–R relations

Z = aRb. To a lesser extent, density stratification tends to diminish the prefactor. The exponent b,

which can, without deep convection, vary from b = 1 to b = 7/4 depending on characteristic

spectral form, remains unaffected by any of the dynamical effects studied here. Values of b can

only be altered by such changes of the particle spectra, which affect the distribution of terminal

velocity with hydrometeor size: in practice, this implies phase changes or variations in

composition of the mixed-type hydrometeor ensemble. In spite of the variations in Z–R relations

found in the present study, when performing an average over the whole cloud and precipitation

volume, standard Z–R relations proposed for stagnant air still hold in a statistical sense.

Furthermore, the effects of vertical air density gradients can be compensated, which should also

help to improve quantitative rainfall estimates at large ranges from the radar site. D 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In hydrological applications, radar data are mostly evaluated to derive rain rates R at the

ground from radar reflectivity g aloft. By definition, g resembles the scattering properties

of an ensemble of hydrometeors. In the Rayleigh limit g is proportional to the sixth

moment of the particle number density distribution n(D), where D denotes particle

diameter (e.g. Doviak and Zrnić, 1993). It can be computed as:

g ¼ p5

k4
jKj2Z; with Z ¼

Z 1

0

nðDÞD6dD:

Thus, for constant wavelength k, variations in g can result from (i) different hydrometeor

types (i.e. phase changes) affecting the dielectric factor |K|2 and (ii) variations in the

number density distribution n(D) affecting the radar reflectivity factor Z, or both. In

general, g may change in time and space with an effectivity depending on several

dynamical and especially microphysical factors.

The precipitation rate R, defined as vertical mass flux density of hydrometeors with

bulk density qh, i.e.

R ¼ p
6

qh

Z 1

0

nðDÞD3wsdD;

is, as Z, subject to certain variations in n(D), but moreover depends on an effective

sedimentation velocity ws that is in detail:

wsðD;w; qÞ ¼ wþ wtðD; qÞ ¼ wþ f ðqÞwt;00ðDÞ: ð1Þ
Here, w denotes ambient air vertical velocity, wt,00(D) is terminal velocity of hydro-

meteors at sea level conditions, and dependence of air density is given by f(q). Variations
of R, therefore, may result from up- and downdrafts as well as from vertical density

gradients (Foote and du Toit, 1969; Kessler, 1969). Evidently, the rain rate for a given

value of Z changes in space and time, and no unique Z–R relation exists in general. Also,

if R at the ground (where w = 0) is derived from Z measured by low-elevation radar scans,

the problem arises how to relate Z in a few kilometers above radar to an instantaneous rain

rate at (or below) the radar level. Even in this case, vertical drafts and the profile of the

horizontal wind may introduce considerable error to this nonlocal approach.

Although this issue had been raised previously (e.g. Battan, 1976; Zawadzki, 1984;

Austin, 1987; Atlas et al., 1995; Yuter and Houze, 1997), to the authors’ knowledge, it has

never been quantified by computing the Z–R relation from the spectra n(D). Our paper

aims to give an example of such quantification by means of analytical calculations and a

cloud-scale numerical case study of a convective shower cloud. Therein, we will address

Z–R relationships locally within the cloud and its precipitation shaft. By giving up the

nonlocal approach to relate R at the ground to Z somewhere aloft, we are in the position to

study both the effects of deep convection and vertical density gradients on R and, hence,

on Z–R. It will be clarified

� if in conditions of strong convection, other Z–R relations than the commonly

accepted formulas should be applied;
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� to what extent the spatio-temporal variations in Z–R relations reported in the

literature can be attributed to the influence of deep convective motions.

The problem is tackled analytically in Section 2: after specification of hydrometeor

spectra by C-type distribution functions for each class of particles, their radar re-

flectivity factor Z is derived as a function of hydrometeor content qq per unit volume.

Herein, q is the specific hydrometeor content (later on we will use index r for rain, c

for cloud water, and i for cloud ice). Then, similar expressions for the precipitation

rate R are given. The Z–R relations following from an elimination of qq are then

subjected to variations of R caused by changing air density and vertical motions. The

choice of qq as a main variable is motivated by the fact that following Kessler

(1969), in most cloud-scale models, qq is the only quantity to account for the pre-

sence of hydrometeors. In Section 3, such a model study is presented. High-resolution

three-dimensional mesoscale model results for the case of a single cumulonimbus

cloud are evaluated and compared to the analytical findings. Sections 4 and 5 present

discussion and conclusions.

2. Analytical approach

Any analytical description of Z–R relationships relies on the choice of a mathematical

representation of hydrometeor spectra. For unimodal mean spectra, many functional forms

exists, of which the log-normal (e.g. Markowitz, 1976) and the C-function (e.g. Clark,

1974; Ulbrich, 1983, 1994) have been used most frequently. As the purely exponential size

distribution proposed by Marshall and Palmer (1948) for raindrops is a special case of the

C-function, we will also apply C-functions for our investigation. Recently, the need for

universal, normalized forms of particle spectra has been expressed independently by

several work groups (e.g. Sekhon and Srivastava, 1970, 1971; Willis, 1984; Sempere

Torres et al., 1994, 1998; Haddad et al., 1996; Dotzek, 1999; Dou et al., 1999; Illingworth

and Blackman, 1999) and, consequently, in our present study, the following normalized

C-type distribution function is assumed for any hydrometeor type:

nðDÞ ¼ N0

Cð4Þ
Cðc þ 3Þ

D

D0

� �c�1

e�D=D0 : ð2Þ

Here, D denotes particle diameter and c is a shape parameter. N0 is an amplitude or

‘‘particle load’’ of the distribution and D0 is a formal scaling diameter (in fact, D0	 1/k
in the notation of Marshall and Palmer, 1948), which can easily be related to any specific

measure of particle diameter, such as the volume median DV as given in Appendix A.

However, computations are facilitated greatly if D0 is retained up to the final form of

derived relations.

The use of a nondimensional spectrum according to Eq. (2) has some advantages

compared to dimensional functions. First, the normalization in Eq. (2) assures that

hydrometeor content qq does not depend on the shape parameter c (cf. Eq. (4)) and that

for c = 1, the exponential Marshall and Palmer (1948) spectrum is reproduced. Second,
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both n(D) and N0 are given in units of m � 4, or conventionally in mm � 1 m� 3. The shape

of the spectrum is characterized by a maximum at

Dmax ¼ D0ðc � 1Þ; nmax ¼ nðDmaxÞ ¼ N0

Cð4Þ
Cðc þ 3Þ ðc � 1Þc�1e�ðc�1Þ:

Normalized values for Dmax and nmax are given in Table 1. With increasing c, the
spectra broaden and conserve qq by lowering nmax. For later use, we define the moment

Mm of order m by

Mm ¼
Z 1

0

nðDÞDmdD ¼ Cð4Þ
Cðc þ 3Þ Cðc þ mÞN0D

mþ1
0 : ð3Þ

As most bulk microphysics cloud models following the work of Kessler (1969) use

hydrometeor content qq as the main prognostic variable, this quantity will also be

applied in this paper:

qq ¼ p
6

qh M3 ¼ pqhN0D
4
0: ð4Þ

Spectral parameters can be substituted by the moments M, so the quantity qq from

Eq. (4) will be introduced to any following equation to eliminate either N0 or D0,

depending on which spectral parameter aside from qq is chosen to describe the particle

spectrum. Note that this does not imply any loss of generality for the spectra. Neither

N0, D0, c nor qq are assumed as constant, and all these quantities can be functions of

time and space.

2.1. Radar reflectivity factor

The radar reflectivity factor Z for spherical particles under the assumption of

Rayleigh’s approximation (radar wavelength much larger than particle size) is given by

Z ¼ M6 ¼ Cð4Þ Cðc þ 6Þ
Cðc þ 3Þ N0D

7
0 ¼ Cð4Þðc þ 5Þðc þ 4Þðc þ 3ÞN0D

7
0; ð5Þ

Table 1

Number and volume median diameters for various values of the shape parameter c
For definition of DN and DV , see Eq. (36). The nondimensional location of the spectral peak (Dmax, nmax) is

also given.

c nmax/N0 Dmax/D0 DN /D0 DV /D0

1.0 1.0
 100 0.0 0.693 3.672

2.0 9.2
 10 � 2 1.0 1.678 4.671

3.0 2.7
 10 � 2 2.0 2.674 5.670

4.0 1.1
10� 2 3.0 3.672 6.670

5.0 5.6
 10 � 3 4.0 4.671 7.669

6.0 3.1
10� 3 5.0 5.670 8.669

7.0 1.9
 10 � 3 6.0 6.670 9.669

8.0 1.2
 10 � 3 7.0 7.669 10.668

9.0 8.5
 10 � 4 8.0 8.669 11.668

10.0 6.0
 10 � 4 9.0 9.669 12.668
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and has unit m3, or conventionally mm6 m � 3. Now, from Eq. (4), we arrive at the

following two desired relationships between Z and qq by eliminating either D0 or N0:

Z ¼ Cð4Þ
½pqh�7=4

ðc þ 5Þðc þ 4Þðc þ 3ÞN�3=4
0 ðqqÞ7=4; ð6aÞ

Z ¼ Cð4Þ
pqh

ðc þ 5Þðc þ 4Þðc þ 3ÞD3
0 qq: ð6bÞ

Note that the Z–R relation of Eq. (6b) being linear in qq is related to hydrometeor

spectra, which have been reported to occur only rarely (Waldvogel, 1974). In effect, most

published Z–qq relations show the power 7/4 (Kessler, 1969) or similar empirical values

like 1.63 (Hauser et al., 1988), 1.82 (Douglas, 1964; Smith et al., 1975) for rain or 1.67

(Liu and Illingworth, 2000), 1.79 (Bielli and Roux, 1999) for cloud ice. Clearly, Z does

not depend on either vertical velocity or on the variation of fall speed due to the vertical

density gradient.

2.2. Mean terminal fall velocity

Specifying the index ‘‘00’’ for all quantities at the chosen reference level, i.e. sea level

conditions with vertical air velocity w = 0, air density q = q00 = 1.225 kg m� 3, first the

terminal fall velocity wt,00 of the hydrometeors as a function of qq in this basic case will be
computed by setting

wt;00ðDÞ ¼ w0

D

D̂

� �b

: ð7Þ

Here D̂ is the unit diameter, usually 1 mm and w0 is the terminal fall velocity of

hydrometeors with D	 D̂. For rain, Kessler (1969) proposed w0 =� 4.11 m s� 1 and b = 1/

2. Using Eq. (7), a volume-weighted mean fall velocity wt,00 can be calculated:

wt;00 ¼
pqh

6qq

Z 1

0

nðDÞwt;00ðDÞD3dD; ð8Þ

which is, after multiplication by qq, identical to the mean mass flux density or

precipitation rate R. In Eq. (8), again either N0 or D0 can be eliminated introducing the

hydrometeor content from Eq. (4):

wt;00 ¼
w0

½pqh�b=4
Cðc þ 3þ bÞ

Cðc þ 3Þ D�bN
�b=4
0 ðqqÞb=4; ð9aÞ

wt;00 ¼ w0

Cðc þ 3þ bÞ
Cðc þ 3Þ

D0

D̂

� �b

: ð9bÞ

Note that Eq. (9b) is independent of qq. Rain rates and Z–R relations will subsequently

be given considering both Eqs. (9a) and (9b).
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2.3. Z–R relation at sea level

Following Eq. (1), in its most general form, the sedimentation velocity of a single

hydrometeor reads

wsðD;w; qÞ ¼ wþ wt;00ðDÞ
q00

q

� �a

;

which in terms of mean values after integration over the entire particle spectrum as in Eq.

(8) yields:

wsðw; qÞ ¼ wþ wt;00
q00

q

� �a

: ð10Þ

Here w denotes any ambient vertical air velocity, reference level terminal velocity wt,00,

and a height dependence f(q) with exponent a ranging from 0.4 (Foote and du Toit, 1969)

to 0.5 (Kessler, 1969). It is obvious that ws is an effective fall velocity subsuming

contributions by vertical air motions and the density dependence of the air drag exerted on

hydrometeors.

The generic precipitation rate R or the vertical hydrometeor mass flux density in kg

m � 2 s� 1 is then given by

R ¼ p
6

qh

Z 1

0

nðDÞwsðD;w; qÞD3dD ¼ �wsðw; qÞqq; ð11Þ

which by virtue of the mean value theorem can be expressed by the right hand side of

Eq. (11), linking both mean sedimentation velocity ws and hydrometeor content. Con-

ventionally, R is taken to be a positive definite quantity even though precipitation falling

to the ground requires a negative ws and hence implies a negative definite R. This is the

reason for the minus sign in Eq. (11).

To derive first R and subsequently the Z–R relation under the above-mentioned

reference conditions at sea level, we see from ws =wt,00 that in this basic case, R reduces

to

R ¼ �wt;00qq: ð12Þ

Using Eqs. (9a) and (9b), this leads to

R ¼ �w0

ðpqhÞb=4
Cðc þ 3þ bÞ

Cðc þ 3Þ D̂�bN
�b=4
0 ðqqÞ1þb=4; ð13aÞ

R ¼ �w0

Cðc þ 3þ bÞ
Cðc þ 3Þ

D0

D̂

� �b

qq: ð13bÞ
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With Eqs. (6a), (13a) and (6b), (13b), respectively, and after some tedious calculations,

the corresponding Z–R relations read

Z ¼ a00;NR
7=ð4þbÞ; with a00;N ¼ Cð4Þ

ð�pqhw0Þ7=ð4þbÞ ðc þ 5Þðc þ 4Þðc þ 3Þ


 Cðc þ 3Þ
Cðc þ 3þ bÞ

� �7=ð4þbÞ
N

�ð3�bÞ=ð4þbÞ
0 D7b=ð4þbÞ; ð14aÞ

Z ¼ a00;DR; with a00;D ¼ Cð4Þ
�pqhw0

Cðc þ 6Þ
Cðc þ 3þ bÞ D

3�b
0 Db: ð14bÞ

Applying Kessler’s b-value for raindrops, i.e. b = 1/2, Eq. (14a) becomes Z = a00,N R14/9

with a power of 14/9’1.56. We see further that choice of the characteristic spectral form

(elimination of either D0 or N0 by qq) causes significant differences in exponent b. These,

however, do not stem from deep convection.

2.4. Z–R relation in deep layers

After studying the special case ws =wt,00 (implying w = 0 and q = q00), we will first

examine density effects on the Z–R relation and then also allow for w 6¼ 0 as in con-

vective clouds.

2.4.1. Stagnant air

Using Eq. (11) again and setting only w = 0 in Eq. (10), the precipitation rate now

becomes

R ¼ �wt;00
q00

q

� �a

qq; ð15Þ

so that Eqs. (14a) and (14b) yield, respectively,

Z ¼ a00;N fN ðqÞR7=ð4þbÞ; with fN ðqÞ ¼
q00

q

� ��a½7=ð4þbÞ�
; ð16aÞ

Z ¼ a00;DfDðqÞR; with fDðqÞ ¼
q00

q

� ��a

: ð16bÞ

Note that the density variations only affect the prefactor of the two characteristic Z–R

relations. The only variable entering their exponent is the value b from the terminal fall

velocity power law.

It is clearly seen that Eqs. (14a), (14b), (16a) and (16b) all represent specific

formulations of the commonly applied Z–R relation

Z ¼ aRb:

To get an impression of the variability in superscript b resulting from our calculations,

Fig. 1 compiles various typical ranges of b. For hydrometeors falling at a constant

terminal velocity wt,00(D) = const, i.e. b = 0 in Eq. (7) as an upper limit b = 7/4 follows.

Most slopes of observed Z–R relations fall in the range 7/5� b� 7/4, where the value
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of 7/5 corresponds to linear laws wt,00(D). The slope b’1.55 ± 0.05 most often reported

in the literature (e.g. Battan, 1973; Hauser et al., 1988; Sauvageot, 1992; Rinehart, 1997)

corresponds to roughly wt,00(D)/D1/2, i.e. b = 1/2 and raindrop-dominated precipitation

(Kessler, 1969; Pruppacher and Klett, 1997). Values of b smaller than 7/5 are seldom

reported as they would correspond to b > 1 or other particular meteorological conditions,

cf. Battan (1973, Table 7.1, pp. 90–91) and Aniol et al. (1980). The lower limit b = 1

follows for equilibrium raindrop spectra (Zawadzki and de Agostinho Antonio, 1988) or

spectra with a constant D0, which have been identified to occur only rarely (Waldvogel,

1974). Note that the same ranges of b were found by Dölling et al. (1998) from an

evaluation of disdrometer data.

2.4.2. Convection

Finally, we discuss the general case in which an external vertical velocity field w is

imposed so that with Eq. (10) the precipitation rate then reads

R ¼ �wsqq ¼ � wþ wt;00
q00

q

� �a� �
qq: ð17Þ

Fig. 1. Schematic representation of different ranges in slope b of Z–R relations derived from analytical

considerations. For relations of the form Z = aRb, the lower limit b= 1 follows for a constant diameter D0. The

light shaded range [1� b< 7/5] is seldom observed but not in principle excluded by theory. The medium shaded

range [7/5� b� 7/4], however, covers all cases depending on N0 and varying vertical velocities wt,00. The most

probable range for the exponent b= 1.55 ± 0.05 is given by the dashed line and the dark shaded area. An upper

limit b= 7/4 follows for wt,00 = const.
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Without loss of generality, we set

w ¼ X wt;00
q00

q

� �a

; �1 < X < 1: ð18Þ

Here negative values of X correspond to updrafts, and X�� 1 is excluded as it

corresponds to floating or even rising particles. Our X-factor approach covers the

following two extreme cases:

1. an arbitrary value of w is imposed on the hydrometeor field, i.e. no coupling of w

and qq. In this case, X is the variable maintaining the given w in an inhomogeneous

wt,00 field: X ¼def w=wt;00ðq00=qÞ�a:
2. w is strictly proportional to w̄t,00 in the hydrometeor field, i.e. complete coupling of

w and qq. In this case, w is the variable maintaining the given X in an

inhomogeneous wt,00 field: w ¼def X wt;00ðq00=qÞ
a:

Definitely, reality will be in between the two alternatives (and probably closer to the first).

The local value of w is a superposition of an imposed vertical wind and an additional

downdraft component induced by the hydrometeor drag. Introducing Eq. (18) into Eq.

(17), the expression for the rain rate becomes

R ¼ �ðX þ 1Þwt;00
q00

q

� �a

qq: ð19Þ

Inserting Eq. (19) in Eqs. (16a) and (16b), respectively, leads to

Z ¼ a00;N fN ðqÞgN ðwÞR7=ð4þbÞ; with gN ðwÞ ¼ ðX þ 1Þ�7=ð4þbÞ; ð20aÞ
Z ¼ a00;DfDðqÞgDðwÞR; with gDðwÞ ¼ ðX þ 1Þ�1: ð20bÞ

Note that any vertical air motions again only affect the prefactor of the two relations.

This statement holds in a very general sense; we have not limited ourselves in this

analytical investigation concerning the variability of spectral parameters (N0, D0, c, qq)
in space and time. Obviously, the exponent b could be altered if the value of b, i.e. the
fall speed power law, would change. Referring to Eq. (7), it is apparent that usually,

transitions from one hydrometeor type to another have to take place (e.g. droplets to ice

crystals) to introduce modified values of w0 and b. If the hydrometeor type or mixture

does not change, say in a warm cloud situation in which raindrops do not freeze and

raindrops collect only cloud droplets or other raindrops, then n(D) could be subject to

arbitrary variations and yet the fall speed power law would remain unaffected. This holds

because Eq. (7) is a general description for terminal velocity as a function of diameter

for one specific hydrometeor class.

3. Modeling case study

The modeling results presented in this section will help to further quantify the

analytical results from a different point of view. For the model experiment to investigate

Z–R relations, the three-dimensional nonhydrostatic Karlsruhe Atmospheric Mesoscale

Model (KAMM) (Adrian and Fiedler, 1991) was applied in a substantially revised and
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extended version suitable to simulate deep convection including a bulk microphysical

cloud module predicting rain water qqr, cloud water qqc, and cloud ice qqi (Dotzek, 1998,
1999). Aside from the prognostic quantity qq, the model also provides the fields of w, q
and terminal fall speed of hydrometeors w̄t,00. As for the analytical approach, all hy-

drometeor fall speeds in the model are subject to a variation due to density stratification

according to Eq. (15) with q00 = 1.225 kg m � 3 and a = 0.4.
We have to mention here that the bulk microphysics description in the model is less

general compared to our analytical approach in Section 2. In the KAMM model, particle

spectra are held fixed (N0, c), and only qq is variable. Nevertheless, we will be able to

study the effects of vertical drafts and air density changes, and also (although simplified)

the influence of mixtures of hydrometeors with different fall speed laws. As shown in

Section 2, the former should modify prefactor a, the latter exponent b of Z–R relations

Z = aRb.

The model domain chosen was 64 km in both horizontal directions x and y. The top

of the domain was at 18 km above sea level (ASL) and in the center of the domain, an

idealized 500-m high bell-shaped mountain (indicated by dashed circles in Fig. 2) rose

from the otherwise flat grass-covered terrain. Spatial resolution of the model was 1 km

horizontally and 10 m (at the ground) to about 100 m (near the model top) vertically.

The basic state of this model run was a barotropic flow of 10 m s� 1 from west-

southwest, and the profiles of temperature and humidity allowed for cloud tops at 8–9

km ASL.

Convection was initiated by a local boundary layer perturbation to the basic state, a

moist and warm air bubble at (x = 10, y = 25), similar to the procedure of Klemp and

Wilhelmson (1978). The bubble was introduced to the system after 1 h of simulation, i.e.

at 1200 local standard time (LST). Fig. 2 shows a synthetical radar composite from the

model study. It is a Maximum Constant Altitude Plan Position Indicator (MAX�CAPPI)

of the radar reflectivity factor, showing the projection of the highest Z-values in the

volume data to the Cartesian planes x,y (large panel), x,z (small upper panel), and y,z

(small right panel). Light grey shading outlines the cloud shape, dark grey areas

correspond to high reflectivities of more than 40 dBZ.

Soon after initiation, a rapidly developing cumulus cloud appeared, moving east–

northeastward with the mean flow. As Fig. 2 reveals, at 1220 LST, cloud top was at

about 7 km ASL (a) and a core of high reflectivity has developed. Only 10 min later,

strong precipitation fell out of the now mature cumulonimbus cloud with its top at 9 km

ASL (b). The decaying stage with weakening precipitation and cloud transition to an ice-

filled anvil can be seen from image (c) from 1245 LST. The highest computed

reflectivities in this storm were above 60 dBZ, the initial instantaneous rain rate at the

ground peaked at 420 mm h� 1, and the largest precipitation accumulation at a single

point was 34 mm. Updrafts in this cloud hardly exceeded 11 m s� 1 (at 1220 LST),

downdrafts reached their peak of about � 10 m s� 1 at 1245 LST, and only a weak gust

front developed at later times. To sum up, this small cumulonimbus cell is by no means

exceptional. Instead, it represents the typical Central European heavy rain shower during

summer and was therefore chosen as a representative case to study the effects of con-

vection on the Z–R relation. For completeness, we mention that the shallow boundary

layer cloud (d) at the right side of the model domain in Fig. 2 is a stationary, orogenic
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stratocumulus which had formed from near-surface horizontal convergence in the lee of

the bell-shaped mountain.

The radar reflectivity factors shown in Fig. 2 represent the total sum of Z-values from

any present hydrometeors. For comparison with our analytical findings, however, their

separate contributions to total reflectivity will be considered. Therefore, even though Figs.

3–5 show Z–R relations for cloud ice and cloud water as well, the quantitative evaluation

is focused on the model-predicted precipitation qqr which can, depending on ambient

temperature, behave like either rain, snow/lump graupel, or a mixture of both.

For raindrops, the KAMM model uses the terminal velocity formulation first applied by

Soong and Ogura (1973) and later on by Klemp and Wilhelmson (1978):

wt;00 ¼ �14:16 m s�1 qqr
kg m�3

� �0:1364

: ð21Þ

Fig. 2. Synthetical radar composite of the modeled storm: projection of maximum reflectivities onto Cartesian

planes, MAX�CAPPI-Z. Letters denote three different stages of cumulonimbus development, (a) 1220 LST

growth, (b) 1230 LST maturity, and (c) 1245 LST decay. Light grey shading shows the cloud dimensions, regions

with Z� 40 dBZ appear in dark grey. Stage (b) being the basis of our case study has been highlighted for clarity.

A stationary shallow boundary layer cloud (d) has formed in the lee of the 500-m bell-shaped mountain (dashed

circular height contours) in the center of the model domain.
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Comparing this relation to Eq. (9a), two things should be noted: the value � 14.16 m s� 1

corresponds to the complete set of factors preceding (qq)b/4 (not only to w0), and the

exponent implies b = 4
 0.1364 = 0.5456, fairly central in the accepted range [0� b]1]

for wt,00(D) power laws (cf. Fig. 1). The analytical Z–R relation for rain from Eqs. (6a) and

(21) and the R–qq relation from Eq. (15) in SI units read

Z ¼ Cð4Þ
ðpqhÞ7=4

14:16�7=ð4þbÞðc þ 5Þðc þ 4Þðc þ 3ÞN�3=4
0

q00

q

� ��a½7=ð4þbÞ�


R7=ð4þbÞ; ð22Þ

R ¼ 14:16
q00

q

� �a qqr
kg m�3

� �1:1364

: ð23Þ

For a pure exponential spectrum (c= 1) with N0 = 8.0
 106 m � 4 as standard value

(Marshall and Palmer, 1948), the same relations in conventional units become

Z

mm6 m�3
¼ 205

q00

q

� ��1:54a
R

mm h�1

� �1:54

;

R

mm h�1
¼ 19:90

q00

q

� �a qq
g m�3

� �1:1364

: ð24Þ

The exponent b = 7/(4 + b)’1.54 agrees very well with our analytical findings and the

experimental data of Dölling et al. (1998). Again, only the prefactor of this relation

depends on air density. Note that using Z = 2.4
 104 (qq)1.82 (Douglas, 1964; Battan,

1973; Smith et al., 1975) yields Z = 199R1.6. Kessler (1969) reported Z = 210R14/9 and

R = 18.35(qq)9/8 for sea level conditions, so on average 200R1.6 is supported (Marshall

and Palmer, 1948; Battan, 1973).

Effects of mixed and ice-phase precipitation were included in the KAMM model

according to the simple approach by Tartaglione et al. (1996): below freezing level height,

Eq. (21) proposed by Soong and Ogura (1973) is applied. Above the freezing level,

hydrometeor fall speeds are computed as temperature-weighted averages between rain-

drop fall speed (Eq. (21)) and a constant terminal velocity (implying b = 0)

wt;00 ¼ �2:5 m s�1; ð25Þ
representative of a mixture of snow and lump graupel (Locatelli and Hobbs, 1974; Starr

and Cox, 1985). For temperatures less than � 35 �C, only this asymptotic fixed value is

assumed. As Tartaglione et al. (1996) were able to show, storm dynamics are improved

significantly by this more realistic description of hydrometeor sedimentation.

Evaluation of the asymptotic case of constant fall speed from Eq. (25) yields Z–R and

R–qq relations using Eqs. (15) and (16a)

Z ¼ Cð4Þ
ðpqh2:50Þ

7=4
ðc þ 5Þðc þ 4Þðc þ 3ÞN�3=4

0

q00

q

� ��a7=4

R7=4; ð26Þ

R ¼ 2:50
q00

q

� �a qqr
kg m�3

; ð27Þ
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or in conventional units and under the same assumptions, as in Eq. (24):

Ze

mm6 m�3
¼ 73

q00

q

� ��a7=4
R

mm h�1

� �7=4

;
R

mm h�1
¼ 9:02

q00

q

� �a qq
g m�3

:

ð28Þ

The equivalent reflectivity factor Ze of ice particles was computed under the assumption of

a melted drop spectrum according to Smith (1984): Ze = 0.225Z.

We now turn to incorporate results obtained with the KAMM model for the storm

shown in Fig. 2. The three characteristic stages of cloud development depicted in this

MAX�CAPPI–Z composite could either be chosen as a basis for our investigation

without altering the outcome much. Decision was made to focus on stage (b), cloud

maturity, for the reason that here maximum up- and downdrafts were nearly in

equilibrium (wmax = 5.8 m s � 1, wmin =� 5.1 m s � 1). Therefore, there should be

negligible bias due to any preference to the sign of vertical motions. Results from

stages (a) and (c) in Fig. 2 have been checked to yield similar statistics, although in stage

(a), storm growth, a greater volume of cloud and precipitation experiences updrafts

(wmax = 11.1 m s� 1, wmin =� 2.0 m s� 1) and reduced rain rates, while in stage (c),

storm decay, rain rates tend to be enhanced due to more dominant downdrafts

(wmax = 3.2 m s� 1, wmin =� 9.8 m s� 1).

3.1. Stagnant air

Neglecting first the Tartaglione et al. (1996) mixed-phase fall speed parameterization

and treating all precipitation qqr as rain drops, we obtain the scatter plot of Z–R relations

shown in Fig. 3 for the modeled cumulonimbus cloud of Fig. 2, stage (b). For all grid

points within the cloud and the rain shaft, both Z and R were evaluated from the

hydrometeor concentrations qq and depicted as symbols in the diagram. The letters r, i,

and c denote the Z–R relations for precipitation (+), cloud ice (*), and cloud water (6),

respectively. While the latter two are mainly given for completeness and to demonstrate

the model’s ability to ‘‘measure’’ extremely small sedimentation rates, the analysis of the

data focuses on the relation for rain. Therefore, the index r will be omitted for simplicity

from the relations given below.

Obviously, for this case in which only density variations from the factor fN(q) are

present, the model data reproduce Eq. (24) very well, although the density dependence

introduces a ± 1.5 dBZ scatter for any value of rain rate. A regression analysis for

R� 10� 6 mm h� 1 yields

Z ¼ ½173� 24�R1:55�0:01; R ¼ ½22:08� 1:94�ðqqÞ1:13�0:01; ð29Þ

and shows that, indeed, only the prefactor is affected by effects of density stratification.

The small standard deviation in the exponent must be attributed to be a purely statistical

artifact of the regression algorithm—as the analytical reasoning showed, the power b

remains unaffected by all the physical mechanisms studied here.
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Evaluating the same case but applying now the temperature-dependent fall speed

parameterization by Tartaglione et al. (1996) for mixed and ice-phase precipitation, Fig. 4

depicts the consequences for one and the same data as in Fig. 3. While curves (c) and (i)

for cloud particles remain unaffected, the Z–R relation for precipitation particles is now

split in two—branch (r) corresponds to Eq. (29) and branch (s) with its steeper slope

outlines the limiting case of constant fall speed for the ice-phase. Fewer points between

branches (r) and (s) indicate mixed-phase precipitation (wet snow/graupel). Both curves

yield similar values for high precipitation rates but start to separate for R < 10 mm h� 1.

The relationship in the asymptotic case (s) with dry snow or graupel only is

Ze ’ 56R1:75; R ’ 12:88qq1:00; ð30Þ

Fig. 3. Z–R relations in the KAMM model study for stagnant air, only including the effect of density variations

after Foote and du Toit (1969). Letters at the curves indicate rain (r,+), cloud water (c, 6), and cloud ice (i, *).
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with the exponent b = 7/4 as expected. Again, the higher precipitation rate aloft reduces the

prefactor in the modeled Z–R relation without changing b, as can be seen by comparison

to Eq. (28).

3.2. Deep convection

Both Eqs. (29) and (30) excluded vertical air motions in the analysis. As the

mesoscale model provides the field w at any grid point, these convective motions can

easily be added when computing the local precipitation rate. Up- and downdraft speeds

in the cumulonimbus cloud at the stage (b) in Fig. 2 were still in excess of 5 m s� 1, so

some portions of the hydrometeors were no longer descending to the ground but rising

upward. As these would lead to negative values of precipitation rate R, they were not

Fig. 4. As Fig. 3, yet including the simple mixed-phase precipitation fall speed parameterization of Tartaglione et

al. (1996). This adds an asymptotic branch (s) to the rain Z–R relation, corresponding to the case of snow/lump

graupel with w�t,00 = const assumed.
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considered in the following evaluation. Naturally, slowly subsiding hydrometeors like

cloud ice and especially cloud droplets are most affected by updrafts and their Z–R

relations will suffer the largest loss of data points.

This can be seen in Fig. 5. As in Figs. 3 and 4, this scatter plot shows Z–R points

from the total cloud and precipitation volume. Therefore, the data are not specific for a

certain height level but for the whole rainstorm. Apparently, the Z–R relations for cloud

water and cloud ice are hardly discernible any more. Only for precipitation rates of more

than 0.1 mm h� 1, the cloud ice data group into a denser cluster with a roughly linear

trend. For the mixed-phase precipitation, however, and R� 0.05 mm h� 1, the data from

the two asymptotic cases of rain and snow/lump graupel now collapse on a linear curve

on average:

Z ¼ ½202� 95�R1:54�0:11; R ¼ ½18:46� 7:23�ðqqÞ1:13�0:10: ð31Þ

Fig. 5. As Fig. 4, but also including any modeled convective vertical motions within the cumulonimbus cell and

its precipitation at the point of mature cloud development, (b) in Fig. 2.
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The error bars give the standard deviation determined from linear regression analysis.

Therefore, even for rapidly falling precipitation hydrometeors, the data are very noisy

and have numerous outliers relative to the mean relation with combinations of high

reflectivity factors and very small precipitation rates. These result from large hydro-

meteor contents within the main updraft core. For some of these data points, ws has

become so small that the rain rate is reduced by a factor of 100 compared to the rain rate

in stagnant air. On the contrary, in the main downdraft within the rain shaft, R is

increased by a factor of 2.

Comparison with Eq. (20a) shows that these variations imply a range of X

½�0:99]X]2:00�:
For more intense convective clouds with higher downdraft intensities, this range would be

expanded, especially for positive X. But even the moderate variation in X suffices to

introduce an uncertainty of ± 47% in the prefactor of the average Z–R relation as shown in

Fig. 6. R–qq relations under the same conditions as in Fig. 5 for mixed-phase precipitation (+), cloud water (6),

and cloud ice (*).

N. Dotzek, K.D. Beheng / Atmospheric Research 59–60 (2001) 15–39 31



Eq. (31). This noise cannot be attributed to any different asymptotic relations for rain and

snow: Fig. 4 shows that the spread between branches (r) and (s) is small for relevant rain

rates, i.e. R^0.1 mm h� 1. Instead, vertical air motion causes the large observed scatter

in Z and R.

Also note from comparing Eqs. (29) and (31) that, as anticipated in Section 2,

introduction of a mixture of hydrometeors with different fall speed laws causes an effect

on the Z–R law exponent b. In this simplified bulk model study, mean value and

standard deviation change due to the presence of only two different hydrometeor types

from b = 1.55 ± 0.01 to a power of b = 1.54 ± 0.11.

Any effects of vertical drafts on R alone are further substantiated by Fig. 6 showing a

scatter plot of qq, R for precipitation (+), cloud water (6), and cloud ice (*) from the

same volume data as in Fig. 5. Obviously, the highest reductions of R occur for large

hydrometeor contents (^2 g m � 3 for rain, ^1 g m � 3 for cloud ice). Individual grid

points in the precipitation volume show an updraft-induced reduction in R to less than

1%, similar values are found for ice. Even more obvious as from Fig. 5 is the distinct

spatial coherence of the updrafts reducing R. For precipitation with qqr^2 g m � 3, the

data outliers group in several discrete branches corresponding to those model grid

columns containing the main updraft. Besides, we see that the largest amounts of

precipitation (above 10 g m � 3) must have occurred at or below cloud base: for these

high values of qqr no more R-reduction due to updrafts takes place. Instead, considerable

shift towards stronger rain rates indicative of downdrafts exists. While the largest

instantaneous rain rate at the ground for this modeled cumulonimbus was 420 mm

h� 1, the absolute maximum is R� 600 mm h� 1.

4. Discussion

The results of our modeling study showed that the Z–R relations analytically derived

for air at rest remain robust in a statistical sense even under strong vertical motions. The

scatter relative to the mean relations, however, was found to be large enough to cover the

range of variations in Z–R relations Z = aRb for convective rainclouds as documented in

the literature. Even convection in nonsevere storms can account for a jump from

Z’205R1.54 to instantaneous relations like Z=[202 ± 95]R1.54 ± 0.11, encompassing

Z = 300R1.5 frequently reported for convective clouds. In addition, when different hydro-

meteor types having individual fall speeds are present, the variability of b increases also.

Concerning the dominant variation of prefactor a, at least the effects of density

variations with height can be corrected using a density profile according to the standard

atmosphere. Such an average stratification will be absolutely sufficient from a practical

point of view. The variation of air density with height is much larger than perturbations

between the standard atmosphere and a measured density profile (e.g. from radiosondes).

The latter would imply a Z correction of at most a few hundredths of a dB. As a density

correction factor we find from Z = aRb and Eqs. (16a) and (16b):

Zcorr ¼ Z
q00

q

� �ab

: ð32Þ
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Obviously, for precipitation aloft the measured radar reflectivity factor Z has to be

increased according to Eq. (32) before any standard sea level Z–R relation can be

applied to yield a representative rain rate R. For radar echo tops of 10 km ASL,

a� 0.45, b� 1.55, and q10 km� 0.41 kg m� 3, we obtain an enhancement factor of

2.18, i.e. roughly a + 3.4 dBZ correction, which should not be neglected when deriving

a vertical profile of R within a deep raincloud, even if there might be other deficiencies

larger than 3 dBZ in real radar data that are not usually being taken care of (e.g. Ulbrich

and Lee, 1999; Campos and Zawadzki, 2000).

Probably more important in practical applications is to consider this density correction

factor for base-level reflectivity scans at large range. Base-level values of Z (determined,

e.g. from 0.5� PPI scans) are routinely used for precipitation estimation. For this

elevation angle, the radar beam will be at 1.5 km AGL for 100-km range, and at 3

km AGL in a distance of 150 km to the radar. The density correction for these height

levels is about 0.5 and 1.0 dBZ, respectively. For an improved areal precipitation

estimate, this should be accounted for. Indirectly it is included, for example, in the

Probability Matching Method (Calheiros and Zawadzki, 1987).

Climatological discrepancies between typical values of N0 at several specific radar

sites can lead to different Z–R relations among even nearby radars, as the prefactors

a00,N, a00,D of the relations depends on N0 and D0 directly, as can be seen from Eqs.

(14a) and (14b). In addition, the shape parameter c plays an important role. In this

paper, we do not exclusively assume purely exponential (c = 1) spectra for the raindrops

as done by Marshall and Palmer (1948). Following the evaluation of Ulbrich (1994)

who found c = 1.71 ± 1.99, we choose c = 2 and apply this value for comparison. Using

N0 = 8.0
 106 m � 4, DV= 5.0
 10� 4 m, w0 = 4.1
100 m s� 1 D̂ = 1.0
 10� 3 m,

b = 1/2, and median diameters from Appendix A, we find for the undisturbed prefactors

a00,N and a00,D in SI units:

a00;N ¼
1:0
 10�10 for ðc ¼ 1Þ

1:6
 10�10 for ðc ¼ 2Þ
;

8<
: ð33aÞ

a00;D ¼
2:0
 10�13 for ðc ¼ 1; D0 ¼ 1:4
 10�4 mÞ

1:7
 10�13 for ðc ¼ 2; D0 ¼ 1:1
 10�4 mÞ
:

8<
: ð33bÞ

For completeness, we give the according Z–R relations in conventional units (Z in mm6

m� 3 R in mm h� 1) as well:

Z ¼
305R14=9 for ðc ¼ 1Þ

464R14=9 for ðc ¼ 2Þ
;

8<
: ð34aÞ

Z ¼
54:8R for ðc ¼ 1; D0 ¼ 1:4
 10�4 mÞ

46:6R for ðc ¼ 2; D0 ¼ 1:1
 10�4 mÞ
:

8<
: ð34bÞ

For weak convection, and in stratiform clouds, at least a portion of the variability in Z–

R must be due to variations in the spectra of involved (mixed-phase) hydrometeors.

Here two aspects should be considered: cloud physical and orographic peculiarities in
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the vicinity of a specific radar site and the occurrence of unusual particle spectra (e.g.

Richter and Goddard, 1996; Sauvageot and Koffi, 2000).

One example of the latter would be precipitation-size particle spectra violating the

common assumption in many studies of N0 = const and rather tending to D0 = const. In

general, precipitation-size particle spectra cannot uniquely be described by assuming

constant values of N0 or D0. Instead, both are functions of time and space (e.g. Huggel et

al., 1996; Nystuen, 1999). However, the case D0’const having been labeled ‘‘rare’’ by

Waldvogel (1974) might serve as an explanation for Z–R relations with exponents in the

range [1� b]7/5] shown in Fig. 1 by light grey shading. In these cases, usually related to

precipitation changes from stratiform to convective or vice versa, particle spectra appear to

be dominated by D0 = const, implying Z/R and a minor contribution from spectra with

N0 = const. Especially in microphysical equilibrium within shafts of heavy rain, these

kinds of spectra can occur in connection to deep convection as well (Zawadzki and de

Agostinho Antonio, 1988; Rinehart, 1997). However, due to the overwhelming effect of

vertical motions on the Z–R relations, they are likely to be overlooked in the data.

A mesoscale cloud model like KAMM using a bulk microphysical scheme, which

specifies spectral shape homogeneously and stationarily for the whole model domain

cannot quantify effects like the one just described above. While our analytical inves-

tigation retained all degrees of freedom containing hydrometeor spectra, the bulk model

results are less general. Focusing on the study of a short-lived summer season rain shower

certainly limits the probability of temporal changes in hydrometeor spectra. Nevertheless,

the model cloud is likely to be considerably simplified compared to a real rainstorm. Yet,

the effect of vertical drafts on R (and hence on Z–R) is so dominant in convective clouds

that a bulk cloud model with high spatial resolution was adequate to confirm the main

findings from the general analytical approach: large deep convection effects on prefactor a,

while exponent b is only affected by mixtures or phase changes of hydrometeors.

Comparing our results to those of other investigators, most research on Z–R relations in

convective precipitation regions has been carried out from an observational point of view.

From her analysis of many observed cases, Austin (1987) was able to show that the actual

rain rate in convective downdrafts may double compared to the rain rate derived from the

reflectivity factor alone. Also supported by Illingworth and Blackman (1999), this is

exactly the finding of the present work. The KAMM modeling results indicated the X-

factor from Eq. (19) to reach just the value of X = 2. These points are also addressed by

Dölling et al. (1998). The authors present a method to quantify the effects of spectral

variations. Illingworth and Blackman (1999) estimate the potential error in deriving R

from Z up to a factor of two, i.e. 100%.

Atlas et al. (1995) noted the very strong reduction of the measured R in updraft cores.

This finding agrees with our value of X’� 0.99 for the updraft-dominated grid points in

the KAMM simulation. In the same article, Atlas and his coauthors experimentally showed

the large variations in the prefactors a when Z–R relations were separately derived for up-

and downdraft regions. They concluded: ‘‘Z–R relations in the presence of significant

drafts are meaningless’’.

This drastic conclusion, although valid for small ensembles taken from strongly

different regions inside a cloud or precipitation core, could not be corroborated within

our analytical and modeling study. Instead, on average over a whole cumulonimbus
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cloud and its precipitation shaft, customary Z–R relations still hold in a statistical sense.

This result coincides with yet another experimental study of Z–R relations (Yuter and

Houze, 1997). Their main conclusion was that though some far outliers may appear in an

R, Z-diagram, on average, the mean relationship between the two remains little affected.

Furthermore, they suggested not to distinguish between ‘‘stratiform’’ and ‘‘convective’’

Z–R relations, as these tend to merge and collapse into a single relation. Also, they

noted the dependence of experimentally derived reflectivity–rain rate relationships on

the spatial scales under consideration. As stated by Atlas et al. (1995) and visible in Figs.

5 and 6 of our present study, considering only a limited volume of a storm to evaluate

R(Z) can produce almost any functional form—leading these authors to their drastic

statement given above.

Yet, another ambiguity arises from large percentages of hydrometeors like snow or

larger cloud ice crystals with wt,00� const, as these tend to increase the power b of radar-

derived Z–R relations. For instance, if the Z–R relationship from Eq. (31) is recomputed,

but including reflectivities and sedimentation rates of all hydrometeors, the result from Eq.

(31) is changed to

Z ¼ ½116� 93�R1:70�0:23; R ¼ ½16:47� 10:26�ðqqrÞ1:12�0:17: ð35Þ

Here inclusion of the large portion of cloud ice in the upper parts of the cumulonimbus

cloud alters both prefactor and exponent b. The variation in b brings it close to the value

of 2. This ice phase effect due to contributions from different hydrometeor types with

substantial reflectivities but highly variable sedimentation rates may also serve as an

explanation for empirically found Z–R relations, which display an exponent b>7/4, such

as the snow relation given by Sekhon and Srivastava (1970) with b = 2.21:

Z ¼ 1780R2:21:

While exponents b>7/4 are not supported from our evaluation based on well-defined

unimodal mean hydrometeor spectra, they could also be evaluated from the data in Fig.

5 if the low rain rate outliers only are considered for R^0.1 mm h� 1. Such a subset of

information easily yields b’2.5 which would, however, lead to a serious contradiction

to the physics of the falling hydrometeor ensemble under the assumptions made here

(cf. Dotzek, 1999).

The present study has focused on vertical convective motions. However, deep moist

convection also has horizontal components and is usually superposed to strong vertically

sheared mean horizontal air flow (cf. Houze, 1997). For a developing rain cell with no

rain at the ground yet (i.e. R00 = 0), application of a Z–R relation would erroneously

diagnose R00 6¼ 0 and also a precipitation accumulation on the ground. In reality, rain will

only reach the ground at later times and with a horizontal displacement due to

combination of convection and transport by the mean wind profile. While having a

minor effect over large areas with homogeneous orography, this horizontal shift can

become important over complex terrain with small distances between neighboring river

catchments. This is even more so due to the large horizontal gradients of reflectivity in

convective clouds (cf. Zawadzki, 1984).
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5. Conclusions

This paper has assessed the effects of convective air motion and density stratification on

Z–R relations Z = aRb widely used in radar meteorology. Both analytical and mesoscale

model results showed the following:

. Vertical air motions as well as density variations affect the prefactor a of standard

Z–R relations, altering both its average value and standard deviation. As a rule of thumb,

deep convection primarily increases and density stratification secondarily diminishes the

prefactor of average Z–R relations.

. Concerning exponent b of Z–R relations without influence of deep convection, the

case Z/R represents a lower bound for hydrometeor spectra with scaling diameter

D0 = const while an upper bound exists with mean terminal velocity wt,00 = const, leading

to Z/R7/4.

. The only mechanism which could further alter the exponent b of Z–R relations is a

change in the terminal fall speed law, which in turn implies variations of hydrometeor

type or mixture. In particular, observed values of the exponent larger b = 7/4 are likely to

be caused by hydrometeor mixtures.

. In the statistical mean over the whole cloud volume, Z–R relations originally

proposed for air at rest and sea level conditions remain applicable even in the presence

of deep convection.

. The influence of the vertical density gradient on R can be corrected for using the

standard atmosphere density stratification, giving also the opportunity to improve

quantitative base-level rainfall estimates at large range (>100 km) from a radar.

. For deep cumulus convection, spatio-temporal variations of instantaneous Z–R

relations may be explained by convective drafts. However, although these cover a similar

range as variations in statistical Z–R relations for deep convection, the latter are very

likely to be affected by other processes also.

. For more stratiform clouds with smaller vertical velocities and cloud depths,

prominent differences among empirical Z–R relations likely have to be attributed to

variations of the hydrometeor spectra or types in different synoptic situations or different

climatological regions.

Proper clarification of how the effects of horizontal convective components and a

mean environment wind profile can be included into a radar-derived precipitation

accumulation over complex terrain in convective weather situations remains an issue

for future research.
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Appendix A. Median diameters

In contrast to other characteristic diameters of a hydrometeor spectrum, the median

diameters with respect to either the total particle number (DN) or volume (DV) are probably
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the most robust spectral size scales. With N denoting total particle number density, they are

defined byZ DN

0

nðDÞdD ¼ N

2
;

p
6

qh

Z DV

0

nðDÞD3dD ¼ qq
2
: ð36Þ

For the C-function of Eq. (2), these quantities cannot be analytically evaluated except for

very simple cases, e.g. for an exponential size distribution (c= 1), the number median is

DN = ln 2 D0. In general, DN and DV must be numerically evaluated from

X1
k¼0

ð�1Þk
k !

DN ðcÞkþc

k þ c
¼ CðcÞ

2
;

X1
k¼0

ð�1Þk
k !

DV ðcÞkþcþ3

k þ c þ 3
¼ Cðc þ 3Þ

2
:

Obviously, DV(c) =DN(c + 3). Table 1 shows the two median diameters for several integer

values of c. To a very good approximation, and provided c� 1, DV can be written as

DV ’ ð2:67þ cÞD0:

Using this result and Eq. (9b), Kessler’s approach to substitute the w�t,00 relation by the fall

speed of a single hydrometeor of diameter DV is easily verified:

wt;00 ¼ w0

Cðc þ 3þ bÞ
Cðc þ 3Þ

DV

ð2:67þ cÞD̂

" #b

:
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Doviak, R.J., Zrnić, D.S., 1993. Doppler Radar and Weather Observations, 2nd edn. Academic Press, San Diego,

562 pp.

Foote, G.B., du Toit, P.S., 1969. Terminal velocity of raindrops aloft. J. Appl. Meteor. 8, 249–253.

Haddad, Z.S., Durden, S.L., Im, E., 1996. Parameterizing the raindrop size distribution. J. Appl. Meteor. 35,

3–13.

Hauser, D., Roux, F., Amayenc, P., 1988. Comparison of two methods for the retrieval of thermodynamic and

microphysical variables from Doppler radar measurements: application to the case of a tropical squall line. J.

Atmos. Sci. 45, 1285–1303.

Houze, R.A., 1997. Stratiform precipitation in regions of convection: a meteorological paradox? Bull. Am.

Meteor. Soc. 78, 2179–2196.

Huggel, A., Schmid, W., Waldvogel, A., 1996. Raindrop size distributions and the radar bright band. J. Appl.

Meteor. 35, 1688–1701.

Illingworth, A.J., Blackman, T.M., 1999. The need to normalise RSDs based on the gamma RSD formulation and

implications for interpreting polarimetric radar data. Proc. 29th Int. Conf. on Radar Meteor., Montreal. Amer.

Meteor. Soc., Boston, pp. 629–631.

Kessler, E., 1969. On the distribution and continuity of water substance in atmospheric circulation. Meteor.

Monogr. 10 (32) Amer. Meteor. Soc, Boston, 84 pp.

Klemp, J.B., Wilhelmson, R.B., 1978. The simulation of three-dimensional convective storm dynamics. J. Atmos.

Sci. 35, 1070–1096.

Liu, C.L., Illingworth, A.J., 2000. Toward more accurate retrievals of ice water content from radar measurements

of clouds. J. Appl. Meteor. 39, 1130–1146.

Locatelli, J.D., Hobbs, P.V., 1974. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 79,

2185–2197.

Markowitz, A.H., 1976. Raindrop size distribution expressions. J. Appl. Meteor. 15, 1029–1031.

Marshall, J.S., Palmer, W.M.K., 1948. The distribution of raindrops with size. J. Meteorol. 5, 165–166.

Nystuen, J.A., 1999. Relative performance of automatic rain gauges under different rainfall conditions. J. Atmos.

Oceanic Technol. 16, 1025–1043.

Pruppacher, H.R., Klett, J.D., 1997. Microphysics of Clouds and Precipitation, 2nd edn. Kluwer Academic

Publishing, Dordrecht, 954 pp.

Richter, C., Goddard, J.W.F., 1996. The dependence of dropsize distribution shape factor on precipitation events.

Proc. 12th Int. Conf. on Clouds and Precipitation, Zurich, pp. 61–64.

Rinehart, R.E., 1997. Radar for Meteorologists, 3rd edn. Rinehart Publ., Grand Forks, 428 pp.

Sauvageot, H., 1992. Radar Meteorology. Artech House, Boston, 366 pp.

Sauvageot, H., Koffi, M., 2000. Multimodal raindrop size distributions. J. Atmos. Sci. 57, 2480–2492.

Sekhon, R.S., Srivastava, R.C., 1970. Snow size spectra and radar reflectivity. J. Atmos. Sci. 27, 299–307.

Sekhon, R.S., Srivastava, R.C., 1971. Doppler observations of drop size distributions in a thunderstorm. J. Atmos.

Sci. 28, 983–994.
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Sempere Torres, D., Porrà, J.M., Creutin, J.-D., 1998. Experimental evidence of a general description for raindrop

size distribution properties. J. Geophys. Res. 103D, 1785–1797.

N. Dotzek, K.D. Beheng / Atmospheric Research 59–60 (2001) 15–3938



Smith, P.L., 1984. Equivalent radar reflectivity factors for snow and ice particles. J. Clim. Appl. Meteor. 23,

1258–1260.

Smith, P.L., Myers, C.G., Orville, H.D., 1975. Radar reflectivity factor calculations in numerical cloud models

using bulk parameterizations of precipitation. J. Appl. Meteor. 14, 1156–1165.

Soong, S.-T., Ogura, Y., 1973. A comparison between axisymmetric and slab-symmetric cumulus cloud models.

J. Atmos. Sci. 30, 879–893.

Starr, D.O’C., Cox, S.K., 1985. Cirrus clouds: Part I: A cirrus cloud model. J. Atmos. Sci. 42, 2663–2681.

Tartaglione, N., Buzzi, A., Fantini, M., 1996. Supercell simulations with simple ice parameterization. Meteor.

Atmos. Phys. 58, 139–149.

Ulbrich, C.W., 1983. Natural variations in the analytical form of the raindrop size distribution. J. Clim. Appl.

Meteor. 22, 1764–1775.

Ulbrich, C.W., 1994. Corrections to empirical relations derived from rainfall disdrometer data for effects due to

drop size distribution truncation. Atmos. Res. 34, 207–215.

Ulbrich, C.W., Lee, L.G., 1999. Rainfall measurement error by WSR-88D radars due to variations in Z–R law

parameters and the radar constant. J. Atmos. Oceanic Technol. 16, 1017–1024.

Waldvogel, A., 1974. The N0-jump of raindrop spectra. J. Atmos. Sci. 31, 1067–1078.

Willis, P.T., 1984. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos.

Sci. 41, 1648–1661.

Yuter, S.E., Houze, R.A., 1997. Measurements of raindrop size distributions over the Pacific warm pool and

implications for Z–R relations. J. Appl. Meteor. 38, 847–867.

Zawadzki, I., 1984. Factors affecting the precision of radar measurements of rain. Proc. 22th Int. Conf. on Radar

Meteor., Zurich. Amer. Meteor. Soc., Boston, pp. 251–256.

Zawadzki, I., de Agostinho Antonio, M., 1988. Equilibrium raindrop size distributions in tropical rain. J. Atmos.

Sci. 45, 3452–3459.

N. Dotzek, K.D. Beheng / Atmospheric Research 59–60 (2001) 15–39 39


	The influence of deep convective motions on the variability of Z-R relations
	Introduction
	Analytical approach
	Radar reflectivity factor
	Mean terminal fall velocity
	Z-R relation at sea level
	Z-R relation in deep layers
	Stagnant air
	Convection


	Modeling case study
	Stagnant air
	Deep convection

	Discussion
	Conclusions
	Acknowledgements
	Median diameters
	References


