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Summary


Rain drop size distribution data obtained from two Joss-Waldvogel disdrometers located at Locarno-Monti, Switzerland during MAP are analyzed to obtain appropriate Z-W and Z-R relationships for use in MAP applications.  The disdrometer data are accumulated into 10 min samples to reduce sampling error associated with the ~1 m3 sample volume of the instrument.  Based on previous studies, relations of the form W=qZ(4/7)  and Z=aR1.5 are assumed and the coefficients q and a are estimated from the data.  The combined data set of 10 min samples from the two disdrometers and the 10 min average data yielded nearly identical mean values of the coefficients.  The recommended relationships are W=3.4Z (4/7) and Z=216R1.5 .  The uncertainties in these mean relationships as expressed in terms of  (1 standard deviation are approximately equivalent to a  (4.4 dBZ error for the Z-W relationship,  and to a  (2.4 dBZ error for the Z-R relationship.  

1. Introduction


Horizontal maps of near-surface rainfall are important in understanding the water cycle of a region and in applications such as flood forecasting, fresh water management, and detection of climate change. Scanning weather radars yield maps of radar reflectivity (Z) which be used to estimate surface rainfall (R).  The relationship between measured radar reflectivity and surface rainfall (R) is complex and the estimation procedure is subject to several independent sources of error (Austin 1987, Joss and Lee 1995).   Biases can result from errors in radar calibration, non-meteorological echo such a ground clutter and anomalous propagation, the vertical variation of reflectivity in the storm between the measurement several km above the surface and the surface, the presence of non-rain hydrometeors such as graupel, hail, and melting snow, attenuation, and variations in the rain drop size distribution (RDSD).  Of these potential sources of bias, all but the last two can be removed or minimized by established methods
. For the purposes of this paper, we will assume that such procedures are utilized, and explore the relatively smaller magnitude biases due to the variation in RDSD (Joss and Lee 1995).  


An estimate of three-dimensional liquid water content (W) of the volume can be obtained when radars scan several elevation angles to obtain a three-dimensional volume of radar reflectivity.  Volumetric liquid water content can be useful in the initiation and validation of numerical models. The Z-W estimation procedure has all the sources of error associated with the estimation of surface rainfall except for the vertical variation in Z since a transformation to near surface values is not required. 

During the Mesoscale Alpine Programme Special Observing Period (MAP-SOP) (Bougeault et al. 2001), the rain drop size distribution within orographic precipitation was measured using two disdrometers deployed at the Swiss Meteorological Institute Osservatorio Ticinese in Locarno-Monti, Switzerland.  These data are analyzed to estimate appropriate Z-R and Z-W relations for the MAP-SOP. 

2. Data

A disdrometer measures drop size distribution by counting the number of drops within each of several size categories over a time interval. We used two Joss-Waldvogel disdrometers (Joss and Waldvogel, 1967, Waldvogel 1974) one operated by the University of Washington (UW) and the other operated by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre.  The UW instrument was the standard RD-69/ADA-90 instrument. The DLR instrument is based on the RD-69/ADA-90 instrument and has been modified for $.  The Joss-Waldvogel disdrometer is an electro-mechanical instrument.  The momentum of a raindrop falling at its terminal velocity on a styrofoam cone with area 50 cm² is converted to an electrical impulse. The amplitude of this impulse is proportional to the diameter of the raindrop. The instrument utilizes 20 size categories to measure drops from ~0.3 to ~5 mm diameter. Drops smaller than ~0.3 mm do not produce an impulse sufficiently above the noise level. Larger raindrops are all grouped into the last of the 20 classes
. At larger rain rates, the detection efficiency for small drops is further reduced due to the generation of environmental noise by the rain itself and an accompanying increase in the magnitude of the noise level below which drops cannot be detected (Joss and Gori 1976).  A short “dead-time” is built into the instrument so that splashes associated with the impact of a large drop on the sensor are not counted as small drops within the RDSD. However, during this dead-time, neither splash products nor actual small drops in the RDSD are measured. In order to account for the small drops in the RDSD that were missed, a dead-time correction which is a function of the number and size of drops measured by the instrument is applied (see Appendix). 


As a data quality check, both disdrometers were compared to a nearby MeteoSwiss rain gauge. The size categories for the DLR disdrometer were calibrated by measuring the transfer function of the signal processing electronics (Shepard 1989).  Joss (personal communication) found that the boundaries between the original DLR diameter classes had to be reduced by 16% to match the gauge amounts. The UW disdrometer used the factory calibration and standard diameter categories supplied by the instrument manufacturer, Distromet Inc. Table 1 shows the daily rainfall accumulations computed from the MeteoSwiss rain gauge and the two disdrometers.  Overall, the instruments agreed well. Rain accumulations for both disdrometers were within 10% of the rain gauge for all days with rainfall over 10 mm. For the four days with less than < 1 mm rainfall measured by the disdrometers, the difference
 among the instruments was less than 0.2 mm. The largest discrepancies occurred on 22 October 1999 and 3 November and neither disdrometer registered any rainfall on 18 November while the gauge measured 0.7 mm. Possible causes of these discrepancies are under investigation. The incomplete records on the UW disdrometer were the result of a computer rather than an instrument problem. 

3. Methodology


The analysis of RDSD data collected by disdrometer must take into account the degree of representivity of the measurements in terms of their location and scale, and address statistical sampling error. 

a. Representivity of location


  Locarno-Monti was within the Laggio-Maggiore Target Area (LMTA) of focussed observations designed to address the precipitation-related objectives of MAP (Bougeault et al. 2001) and is near a climatological local maxima of heavy precipitation in the southern Alps (Frei and Schär 1998).  Locarno-Monti received 30 days of rainfall during the period 20 September–18 November 1999 within a variety of synoptic conditions (Bougeault et al. 2001) and was near the center of the maximum rainfall accumulation during the MAP IOP2b event on 19-20 September 1999 (Rotunno and Ferretti 2002). The details of the rainfall distribution varied within the LMTA so one location cannot be exactly representative of other locations within the LMTA or the LMTA area mean.   

b. Representivity of spatial scale


The spatial scale of the recorded 1 min disdrometer measurements is order 1 m3. The spatial scale of the radar measurements to which they are intended to be applied is ~1 km3.  The order 109 difference in spatial scales is staggeringly large. It would take almost 31.7 years for a single disdrometer to measure a volume of atmosphere equivalent to a typical individual radar resolution volume. To date, all in situ measurements of the RDSD either via aircraft particle probes or surface-based disdrometers have had a sampling volume of 10 m3 or less. Without instantaneous in situ observations at larger scales, it has been difficult to assess how well the variability of the RDSD in time represents its variability in space or how well averaging in time represents averaging in space. Joss and Gori (1978) examined the characteristics of the RDSD over increasing time periods within two storms at Locarno-Monti and found that after several hundred minutes the characteristics of the RDSD tended to converge toward an exponential distribution. A single instrument sample over 100’s of minutes in length is obtained within different portions of the storm and possibly is a result of different precipitation processes. Joss and Gori (1978) recognized this limitation. They concluded that " true exponential distributions are obtained when adding many 1 min samples of different rain intensity". Joss and Gori also found that the rate of change of the RDSD shape was not constant but varied approximately with the natural logarithm of the accumulation time. For example, the relative difference in average shape of the RDSD between samples for 1 min and 10 min accumulations was larger than between samples for 11 min and 20 min accumulations. In examining the issue of uniformity of precipitation processes, Kostinski and Jameson (1997) analyzed disdrometer time series data and found ~10 min duration rain "patches" with a similar number of drops of a given size per minute.  They described the RDSD at larger scales that would incorporate multiple rain "patches" as mixtures of Poisson distributions. 

c. Sampling error


Smith et al. (1993) modeled sampling errors in an normalized exponential RDSD as a means to assess the relative contributions of sampling uncertainties versus natural inhomogenities to the apparent variability of in situ RDSD measurements. They found a consistent low bias in estimates of  R and Z that decreased as the total number of drops in the sample increased. The low bias is a result of the mismatch between the typical measurement sample volume of 1 m3 and the average concentration of larger drops in the sample which is often less then 1 per 1 m3. For example, for an average concentration of 4 mm diameter drops of 1 drop per 100 m3, on average 99 of 100 1 min samples will not register a drop 4 mm in size . Without the large drop, the 99 samples will have a low bias in R and a slightly larger low bias in Z because of the ~D4 compared to D6 weighting. The one sample with the 4 mm drop will have high biases in R and Z, but when averaged with the other 99 samples, the mean bias will be still be low. This type of sampling bias associated with an exponential-type distribution where significant contributions to R and Z can come from low concentrations of large drops is in addition to the Poisson uncertainty which is based on the number of drops measured.  

d. Processing procedure


To process the disdrometer data to reduce uncertainties we have to compromise between two conflicting constraints. To reduce sampling error we should increase the number of drops by increasing the sampling accumulation time. To reduce errors associated with mixing samples representing distinct precipitation processes we should keep the sampling time small. As a compromise between these two constraints, we have chosen a 10 min accumulated RDSD as the basis of our analysis and a 60 min accumulated RDSD for comparison. A 10 min accumulation period allows us to reduce but not eliminate sampling errors. A 60 min accumulation period permits us to reduce sampling error further but at the expense of mixing rain patches. Since we are comparing data obtained from two instruments, we have the additional constraint that we would like to compare the same time periods, e.g. 01:00:00-01:09:59. This latter constraint means that sometimes we will include minutes within the 10 minute period where an individual instrument did not measure any drops
. A time period is considered rainy if at least $60% of the 1 min measurements within the period had drops. In processing the data, we have removed 1 min measurement with less than 20 drops
 which usually correspond to non-precipitation triggers such as wind hits and insects. We have also applied a minimum rain rate threshold 0.2 mm/hr to remove accumulated samples prone to large sampling errors. ($I am no longer sure this threshold was the right thing to do, what we intend is a proxy for Ntot. I am thinking esp. in context of the 60 min samples which would have plenty of raw counts at rain rates < 0.2 mm/hr. Perhaps we should just threshold on Ntot>=100 for the accumulated sample instead, it wont change things much but all the numbers would have to be recomputed.$)

Radar reflectivity, liquid water content, and rain rate were calculated from the dead-time corrected RDSD (N(D) in units of # per m3 per mm) as follows. 
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For each of the 20 size categories, Di is the mean diameter of the size category in mm, and (Di is the width of the size category in mm. The units of Z are mm6 m3, W are mm3m3 and for R are mm hr-1 . The particle fall speed (V ) is a function of diameter, temperature, and pressure (Berry and Pranger 1974) and is in units of m s-1.

For our analysis below we used three versions of the disdrometer data, the union of the 10 min accumulated DLR and UW data (combo10), the union of the 60 min accumulated DLR and UW data (combo60), and the time-synchronized average of the 10 min DLR and UW data (aver10).  Table 2 shows statistics for the the aver10 data set and for the DLR and UW 10 min data sets separately. The effect of the dead-time of the instrument is evident in the smaller number of measured drops at higher rain rates. At least half of the rain accumulation was obtained within rain rates < 10 mm hr-1. The 60 min data has similar total accumulations but lower average rain rates compared to the 10 min data as is expected given the roughly lognormal distribution of 1 min rain rates.  The aver10 data has twice the sampling volume of the individual 10 min data sets. Since the DLR and UW disdrometers used different size categories to count drops, we could not average the raw counts per category and instead averaged the calculated R, W, and Z values for each time-synchronized sample to obtain the aver10 version of the data. 
4. Analysis
a. Characteristics of samples from the two disdrometers

The calculated Z versus calculated R values for the accumulated 10 min samples from both disdrometers are shown in Figure ZRSCAT.  The points from both disdrometers are scattered relatively evenly throughout the plot indicating that the data from the two disdrometers likely represent two different samples from the same parent population. The frequency distributions of Z and R are very similar between the two instruments (Figure HISTZ and HISTR). There is a slight offset between the distributions of Z where the DLR disdrometer has lower frequencies than the UW disdrometer for Z ( 25 dBZ and higher frequencies for Z > 25 dBZ (Figure HISTZ). This offset is not apparent in the R distributions in Figure HISTR. Since the offset is larger in the D6 weighted Z than the ~D4 weighted R, we surmise it is due to a small residual error in the calibration of the size category boundaries for the larger drop sizes in one or both of the instruments.   

$Are the Figures HISTZ and HISTR computed for the subset of times where the times exactly match (1243 10 min samples)?$

$ we need to justify that the data are close enough to each other that we can just combine the samples together into one big sample$

b.  Calculation of Z-W and Z-R relations

The methods of calculating Z-R and Z-W relations from measured RDSD are almost as numerous as the number of papers that treat this subject. The resulting relationship can be very sensitive not only to the input data but also to the method by which it was calculated (Campos and Zawadzki 2000).  

i. Z-W 

For the Z-W relations use we a quadratic equation of the form W=qZ4/7  which simplifies into the linear equation:

log10(W)=log10(q)+(4/7)log10(Z)




[4]

The exponent 4/7 in the Z-W relation is obtained as follows. We approximate the RDSD as an exponential distribution, 
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 for D from 0 to infinity where No is a constant, and integrate the definite integral forms of [1] and [2]. The general formula W=qZs is then translated into:
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We note that setting s=4/7 will cancel the ( terms and remove the direct dependency of q on W.  Following Doelling et al.’s (1998) methodology, we determine a value of q for each sample of  the population using q=W/(Z4/7) .  

The plot of log10(q) versus log10(W) (Figure ZMa) illustrates that log10(q) values are uncorrelated with W and vary between approximately 0.3 to 30 q units.  The sloping lower edge of the cloud of points is an artifact of the thresholding on 0.2 mm/hr rain rate. Lines of constant rain rate are roughly parallel to the lower right edge. The narrower distribution of q values for lower  rain rates is expected since the higher rain rate samples have a larger number of drops and less statistical sampling error than the lighter rain rate samples (see Section 3 and Table 2). The distribution of q is approximately lognormal (Figure ZMb) and the distribution of log10(q) for this data set
 is close to Gaussian (Fig. ZMc). We use the mean
 log10(q) value to obtain the best estimate and ( 1 standard deviation (() of log10(q) as an assessment of the uncertainty (Table 3). The bottom half of Table 3 shows the equivalent values in q units. Since  ( 1 standard deviation of log10(q) is not symmetric in q, we have indicated –( as the 16th percentile and +( as the 84th percentile.  Figure ZMd and the biases in Table 3 provide information on how well [4] estimates liquid water content from Z compared to liquid water content calculated from the RDSD in [2]. Cumulative bias is 
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.  While the spread of points around the 1:1 line  in Figure ZMd is wide, there is no bias to the cumulative estimate based on [4].  Individual estimates of W for dependent data will have an average positive bias of 15-18%. The statistics for the aver10 data set are nearly identical to the combo10 data set. The difference in the mean values between the combo10 and combo60 data is larger than the standard error of the mean (
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) but its physical significance is difficult to assess. The shift in the combo60 mean toward lower values is consistent with a reduction in the low bias of calculated Z relative to W associated with a smaller sampling error. In addition to smaller sampling error , combo60 data has smaller sample size and larger errors associated with mixing rain patches compared to combo10.  A much larger data set than obtained during MAP would be needed to be able to quantify the relative contributions of these sources of uncertainty to the difference in mean q.  

ii. Z-R

Calculation of rain rate requires particle fall speed V(D,T,P) (see [3]). Even when T and P are assumed, empirical expressions for fall speed (Berry and Pranger 1974) do not have a simple functional form amenable to a definite integral solution for R. For the Z-R relation
, we assume a quadratic equation of the form Z=aR1.5 which simplies to the linear equation:

log10(Z)=log10(a)+(1.5)log10(R)




[6]

The fixed exponent of 1.5 for the Z-R relation was originally proposed by Smith and Joss (1997) based on empirical studies and has been tested with multi-year samples of disdrometer data by Doelling et al. (1998) and Steiner and Smith (2000). 

The values of the coefficient a as a function of rain rate for each of the 10 min samples in combo10 are shown in Figure ZR4a.  If there were distinct a values for lighter versus heavier precipitation, it would manifest in the scatter plot as discernably different populations of points as a function of R.  Instead, we have one widely scattered population of a values centered roughly between log(a) of 2 to 2.7.  As in Figure ZMa, there is a narrower distribution of a values for higher rain rates >5 mm/hr compared to <5 mm/hr since the higher rain rate samples have less statistical sampling error. 


Similar to the characteristics of the distribution of q, the distributions of a is approximately lognormal (Figure ZRb) while log10(a) is roughly normal (Figure ZRc). 

Similar to the procedure used to obtain the Z-W relation, we compute the mean value and standard deviation of log10(a) and their equivalent values in a  (Table 4). Again, the statistics for the combo60 data are shifted toward higher a values which is consistent with a reduction in the low bias of calculated Z relative to calculated R associated with a smaller sampling error. The fall velocity factor in R likely has a compensating effect for some types of errors as the  biases in Table 4 are slightly smaller than in Table 3 such that an individual estimate of R for dependent data will have an average positive bias of ~10%. 

c. Uncertainties and their impact

A recommendation to use a particular Z-W or Z-R relation is not truly complete without information on how well the suggested relations perform on independent data.  The nature of errors associated with these relations makes sample size particularly important and it is not uncommon for the entire available data set to be used to estimate the Z-W or Z-R relation even in multi-year data sets (e.g. Doelling et al. 1998, Steiner and Smith 2000).  Unfortunately, having used all the data to obtain our best estimate we have no independent data with which to test it. 


The quality of the relation may be lowered if the sample size is reduced below some critical value.  If we split aver10 into two halves based on time, we have two independent data sets based on different sets of storms.  The mean coefficients vary slightly for the Z-R but not noticeably for the Z-W (right side of Tables 3 and 4) compared to the aver10 data set as a whole.  Application of the Z-R relation derived for one half of the data to the other half yields cumulative estimates equal to 105% of the RDSD calculated estimates. 

By definition, 68.27% of the samples in the population fall within ((. The impact of applying the relations corresponding to the ((  q and a values are shown in Tables 5 and 6. For comparison,  the typical error in R associated with not correcting for the variation of the profile of reflectivity between the lowest radar measurement and the ground is 3 dB (factor of 2) in the Alps (Germann and Joss 2002). 
5. Conclusions 


$ say something about the Z-M relation$

Examination of RDSD data obtained from two Joss-Waldvogel disdrometers deployed at Locarno-Monti during MAP yields information on the relative magnitude of the RDSD variation component of error in mapping rainfall from observed reflectivity. Errors in 30 day rainfall accumulation due to RDSD variations in independent data are within 5% while errors in individual rain rates can be 64%-155% (Table 6). The relative sizes of these errors are small compared to several other known error sources in rainfall mapping from radar data and emphasize the importance of correcting overall biases with proper radar calibration and biases as a function of range using procedures to account for the variations in the vertical profile of precipitation from the radar measurement to the ground.  
The combined 10 min accumulation (combo10) disdrometer data set mean relation of Z=216R1.5 is bracketed by a lower bound of Z=112R1.5 and an upper bound of Z=418R1.5.  These bounds encompass the 60 min accumulation (combo60) mean relationship and all the Z-R relations used by the national weather services within the MAP-SOP domain--Austria, France, and Italy Z=220R1.6 (Marshall and Palmer 1948),  Germany Z=256R1.42 (Aniol et al., 1980), and Switzerland Z=316R1.5 (Joss et al., 1998).   Since it is unlikely that variations in RDSD follow national boundaries, it would be useful to create a merged rainfall product based on quality controlled radar data for the MAP domain using a single Z-R relationship. From a qualitative standpoint, the exact relation used is not critical as a 5 dBZ difference will translate into a 105%, 125%, 115%, and 115% difference in R for the Marshall-Palmer, Anoil et al., Joss et al. and MAP Z-R relations respectively. As errors in rain rate at a particular point estimated from radar data are can be large (Figure ZRd, Table 6), comparisons with other data sets and numerical models are best done with areal averages or accumulations. 
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Appendix


The dead-time correction for the Joss-Waldvogel disdrometer accounts for the small drops of the RDSD which are not measured during the fraction of a second immediately after a large drop hits the instrument sensor (styrofoam cone).  A drop in the ith channel produces a dead time for all k channels where Dk < 0.85Di. The formula was developed by Joss and Waldvogel and is described in detail by Sauvageot and Lacaux (1995). It is included here to correct a typographical error in their paper. 
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 is the number of drops in channel i without correction, Ni is the number of drops in channel i with correction, T is the sampling time in seconds, and log is the natural logarithm.


We applied the dead-time correction to the time accumulated RDSD rather than to each 1 min RDSD. The formula above does not correct the drop counts for size categories where no drops were measured (i.e. Ni=0). By accumulating the RDSD over time we increase the probability of detecting at least a few drops in each of the small size categories and can hence reduce this potential source of error. 
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Table 2. RDSD data sample statistics. The total accumulation and average rain rates are calculated after the dead-time correction is applied. The UW data had sporadic dropouts due to a computer problem so the time periods of the DLR and UW data do not match exactly.

	Description
	Rain rate

category
	# Samples
	Total

Accum

 (mm)
	Aver.

Rainrate

(mm/hr)
	Drop Counts per 

Sample (as measured, 

no dead-time correction)

	
	
	
	
	
	min
	mean
	max

	DRL 10 min
	All
	1432
	835
	3.5
	116
	3445
	12601

	
	R < 1
	504
	44
	0.5
	116
	1735
	6998

	
	1 ( R < 5
	674
	265
	2.4
	255
	3912
	12601

	
	5 ( R 10
	138
	157
	6.8
	1425
	5147
	10502

	
	10 ( R < 50
	112
	326
	17.5
	1192
	6088
	9580

	
	R ( 50
	4
	43
	64
	7140
	7658
	8120

	UW 10 min
	All
	1310
	731
	3.3
	128
	4075
	17566

	
	R < 1
	487
	43
	0.5
	128
	2238
	9828

	
	1 ( R < 5
	607
	244
	2.4
	315
	4561
	17555

	
	5 ( R 10
	113
	131
	6.9
	1533
	6245
	12068

	
	10 ( R < 50
	100
	286
	17.1
	2485
	7431
	11228

	
	R ( 50
	3
	28
	56.1
	9662
	10158
	10905

	Aver 10 min
	All
	1243
	717
	3.5
	370
	7706
	29942

	
	R < 1
	415
	38
	0.6
	370
	3998
	15959

	
	1 ( R < 5
	613
	243
	2.4
	513
	8556
	29942

	
	5 ( R< 10
	120
	138
	6.9
	2984
	11279
	20040

	
	10 ( R < 50
	92
	270
	17.6
	4414
	13779
	20574

	
	R ( 50
	3
	28
	55.5
	17047
	17673
	18632

	DLR 60 min
	All
	269
	831
	3.1
	735
	18306
	61638

	
	R < 1
	82
	42
	0.5
	735
	8818
	29364

	
	1 ( R < 5
	144
	334
	2.3
	2883
	20674
	61638

	
	5 ( R< 10
	25
	174
	7
	6298
	23445
	46477

	
	10 ( R < 50
	18
	281
	15.6
	17018
	35447
	49893

	
	R ( 50
	0
	-
	-
	-
	-
	-

	UW 60 min
	All
	245
	729
	3.0
	1930
	21807
	96483

	
	R < 1
	80
	40
	0.5
	1930
	12053
	44142

	
	1 ( R < 5
	127
	297
	2.3
	6299
	23641
	96483

	
	5 ( R< 10
	22
	145
	6.6
	11150
	31235
	55131

	
	10 ( R < 50
	16
	247
	15.5
	23127
	43048
	62608

	
	R ( 50
	0
	-
	-
	-
	-
	-


Table 3. Estimates of coefficient q and its uncertainties and biases in log10(W)=log10(q)+(4/7)log10(Z) and W=qZ4/7. ( is standard deviation, r2 is ratio of explained variation to total variation (coefficient of determination). 

	
	
	combo10
	aver10
	combo60
	first half

aver10
	second half

aver10

	log10(q)
	mean
	0.529
	0.531
	0.460
	0.533
	0.530

	
	(
	0.25
	0.23
	0.23
	0.22
	0.25

	
	median
	0.527
	0.532
	0.458
	0.543
	0.507

	
	r2
	1.05
	1.02
	1.09
	1.1
	0.93

	
	cumulative bias
	1.00
	1.0
	1.0
	1.0
	1.0

	
	average bias
	1.01
	1.01
	1.01
	1
	1.01

	q
	mean
	3.4
	3.4
	2.9
	3.4
	3.4

	
	16th percentile
	1.9
	2
	1.7
	2.1
	1.9

	
	84th percentile
	6
	5.8
	4.9
	5.6
	6

	
	r2
	1.05
	1.02
	1.09
	1.1
	0.93

	
	cumulative bias
	1.05
	1.04
	1.05
	1.07
	0.98

	
	average bias
	1.18
	1.15
	1.16
	1.14
	1.17


Table 4. Estimates of coefficient a and its uncertainties and biases in log10(Z)=log10(a)+(1.5)log10(R) and Z=aR1.5.
	
	
	combo10
	aver10
	combo60
	first half 

aver10
	second half

aver10

	log10(a)
	mean
	2.335
	2.334
	2.428
	2.324
	2.344

	
	(
	0.29
	0.27
	0.27
	0.25
	0.28

	
	median
	2.332
	2.331
	2.427
	2.297
	2.364

	
	r2
	1.09
	1.07
	1.11
	1.09
	1.06

	
	cumulative bias
	1.0
	1.0
	1.0
	1.0
	1.0

	
	average bias
	$
	$
	$
	$
	$

	a
	mean
	216
	216
	268
	211
	221

	
	16th percentile
	112
	116
	144
	117
	116

	
	84th percentile
	418
	400
	499
	379
	422

	
	r2
	1.09
	1.07
	1.11
	1.09
	1.06

	
	cumulative bias
	1.07
	1.05
	1.06
	1.08
	1.02

	
	average bias
	1.1
	1.09
	1.09
	1.08
	1.09


Table 5. Impact of ( standard deviation in coefficient q in W=qR4/7 compared to combo10 mean value of 3.4.

	Coefficient a value
	1.9
	3.4
	6

	% difference in W estimated from Z 
	56%
	100%
	176%

	Difference in dBZ estimated from W 
	-4.4
	0
	4.3


Table 6. Impact of ( standard deviation in coefficient a in Z=aR1.5 compared to combo10 mean value of 216.

	Coefficient a value
	112
	216
	418

	% difference in R estimated from Z 
	155%
	100%
	64%

	Difference in dBZ estimated from R 
	2.3
	0
	-2.4


Figure Captions

Figure ZRSCAT. Plot of calculated Z versus calculated R from 10 minute accumulated DLR and UW disdrometer RDSD samples. Solid lines indicate Z-R relation based on mean coefficient a values for each data set (DLR: Z=201R1.5 , UW: Z=231R1.5 ).  Dotted line indicates mean value for combo10 data set, Z=216R1.5.  $note dBZ should be on x axis to make more compatible with Doelling et al’s Figure 1. and replot lines to correspond to our final Z-R relations in Table $

Figure HISTZ. Frequency distribution of calculated Z values for 10 minute accumulated DLR and UW disdrometer RDSD samples.

Figure HISTR. Frequency distribution of calculated R values for 10 minute accumulated DLR and UW disdrometer RDSD samples. 

Figure ZM. a) Plot of RDSD calculated rain rate versus coefficient q in W=qZ(4/7). b) Frequency distribution of q, c) Frequency distribution of log10(q), d) Plot of RDSD calculated W versus estimated W using W=3.4Z(4/7) and calculated Z.

Figure ZM. a) Plot of RDSD calculated rain rate versus coefficient a in W=qZ(4/7). b) Frequency distribution of a, c) Frequency distribution of log10(a), d) Plot of RDSD calculated R versus estimated R using Z=216R1.5 and calculated Z.

�� See Joss and Lee (1995), Joss et al. (1998), Vignal et al. (2000),and Germann and Joss (2001) for detailed discussion of these methods as they are applied by the Swiss Meteorological Agency to operational radar data. 


� The mean diameter of this 20th size category representing the largest drops over a particular size has the largest uncertainty compared to the other 19 size categories which have both minimum and maximum diameter limits.


� The measurement accuracy of the MeteoSwiss rain gauge is $ mm corresponding to the rainfall associated with a single tip of this tipping-bucket type gauge.


� This processing method differs from other methods where consecutive rainy minutes are processed into 10 min accumulated samples.


� These counts are raw drop counts as measured by the disdrometer rather than concentrations. 


� A Gaussian distribution of log10(q) is not generally true, especially for smaller sample sizes.


� Doelling et al. (1998) used the median rather than the mean. 


� Although we are interested in obtaining a relation to transform observed Z into estimated R, we will follow the convention of describing this relation in terms of Z=aRb so our  results can be more readily compared to those reported by other investigators. 
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