8.1 Aliasing

Because the DFT is based on sampling a continuous function at a finite set of equally-spaced points \(j \Delta t \), many different \(L \)-periodic functions can have the same DFT. In fact, different sinusoids can have the same DFT, an ambiguity called aliasing. In general, consider harmonic \(M \) sampled on the grid \(t_j = (j - 1) \Delta t \) where \(j = 1, ..., N \) and \(\Delta t = L/N \):

\[
\exp(i \omega_M t_j) = \exp \left[\frac{2 \pi M}{L} (j - 1) \frac{L}{N} \right] = \exp \left[2 \pi i \frac{M(j - 1)}{N} \right]
\]

Harmonics \(M + qN, \quad q = \pm 1, \pm 2, ... \) also have exactly the same values at the grid points, since

\[
\exp(i \omega_{M+qN} t_j) = \exp \left[2 \pi i \frac{(M + qN)(j - 1)}{N} \right]
= \exp \left[2 \pi i \frac{M(j - 1)}{N} \right] \cdot \exp \left[2 \pi i q(j - 1) \right]
= \exp(i \omega_M t_j)
\]

Thus there is always ambiguity in whether one is looking at a smooth, adequately sampled signal, or a highly oscillatory, poorly sampled signal. Our choice of how to assign harmonics \(M \) to the different components \(m \) of the DFT was based on assuming the signal is smooth. A signal composed of highly oscillatory harmonics that alias to a low harmonic \(M \) on the given grid will just add to the true signal from that harmonic. For instance DFT element \(m = 1 \) includes the signal not only from harmonic \(M = 0 \) but also from \(M = \pm N, \pm 2N, ... \), as shown in the left panel of Fig. 1.

The Nyquist frequency \(\omega_{N/2} = \pi/\Delta t \) is the maximum frequency that is unambiguously detectable on the grid. It corresponds to a \((1, -1, 1, -1, ...) \) oscillation on the grid of period \(2 \Delta t \) (right panel of Fig. 1).
8.2 Matrix form of DFT/IDFT; Parseval’s Thm

The DFT and IDFT can be expressed in matrix form. If \(u \) is the vectors of gridpoint values \(u_j \), then:

\[
\hat{u} = \text{DFT}(u) = N^{1/2} Fu,
\]

\[
u = \text{IDFT}(\hat{u}) = N^{-1/2} F^\dagger \hat{u},
\]

where \(\hat{u} \) is the DFT of \(u \), the elements of the DFT matrix \(F \) are

\[
F_{mj} = N^{-1/2} \exp(-2\pi i (m-1)(j-1)/N),
\]

and \(F^\dagger \) is the conjugate transpose of \(F \).

We showed above that the IDFT is the inverse of the DFT, so

\[
u = N^{-1/2} F^{-1} \hat{u} \Rightarrow F^{-1} = F^\dagger.
\]

That is, \(F \) is a unitary matrix. This gives an easy derivation of Parseval’s theorem

\[
\sum_{m=1}^{N} |(\hat{u}_m/N)^2| = \hat{u}^\dagger \hat{u}/N^2
\]

\[
= u^\dagger F^\dagger Fu/N
\]

\[
= u^\dagger u/N
\]

\[
= N^{-1} \sum_{j=1}^{N} |u_j^2|.
\]

That is, the sum of the squares of the approximate Fourier coefficients \(\hat{u}_m/N \) is equal to the average power or squared amplitude of the time series \(u_j \). We
interpret Parseval’s theorem as a partitioning of the power into contributions from each harmonic or wavenumber; this is very useful for interpretation of data.

8.3 Key things to remember about the DFT

Matlab DFT: \(\texttt{uhat} = \text{fft}(\texttt{u}) \); inverse DFT: \(\texttt{u} = \text{ifft}(\texttt{uhat}) \).

Will calculate the DFT or inverse DFT using the ‘fast’ algorithm if the data length is \(N = 2^p3^q5^r \). For other \(N \), it will take \(O(N^2) \) flops and go much slower if \(N \) is large.

Assumes periodic input : \(u_{N+1} = u_1 \) (discontinuities between the endpoints can create unintended artifacts)

Relation to Fourier series If \(u \) is sampled from a continuous periodic function \(u(t) \), \(\texttt{uhat}/N \) gives an estimate of its complex Fourier series coefficients \(c_M \):

\[
\hat{u}_m/N \approx c_M, M = m-1 \ (1 \leq m \leq N/2) \text{ or } m-1-N \ (N/2+1 \leq m \leq N).
\]

For smooth functions \(u(t) \) and low-order harmonics, this approximation is extremely accurate. Parseval’s theorem partitions the power in \(u \) into the Fourier modes or harmonics in its DFT.

Account for the shift between the indices \(m \) and the corresponding Fourier harmonics \(M_m \). In Matlab, define the index vector of harmonics \(M = [0:(N/2-1) -N/2:-1] \) and the frequencies \(\omega_M = 2\pi M/L \) (or wave numbers \(k = 2\pi M/L \) in a problem in which position \(x \) is the independent variable).

\(m=1 \) coefficient of \(\texttt{uhat} \) is \(N \) times the mean of \(u \) (easily proved from DFT definition).

DFT is complex-valued If \(u \) is real, the DFT coefficients for Fourier modes \(M \) and \(-M \) are complex conjugates (easily proved from DFT definition).

\(x \) derivative of spatially periodic function Matlab: \(\texttt{dudx} = \text{real}(\text{ifft}(1i*k*\texttt{fft}(u))) \);