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deciding whether u(z) is p times continuously differentiableI’'we need to look at the function defined by
setting
u(—x) = —u(x)

for —1 < z < 0 and then extended periodically with period 2 from the interval [—1, 1] to the whole real
line. This requires certain properties in u at the endpoints x = 0 and z = 1. In particular['the extended
u(z) is C* only if all even derivatives of u vanish at these two points along with u being C* in the
interior.

Such difficulties mean that spectral methods based on Fourier series are most suitable in certain
special cases (for example if we are solving a problem with periodic boundary conditionsIin which case
we expect the solution to be periodic and have the required smoothness). Methods based on similar
ideas can be developed using other classes of functions rather than trigonometric functionsI'and are
often used in practice. For examplel'families of orthogonal polynomials such as Chebyshev or Legendre
polynomials can be usedT'and fast algorithms developed that achieve spectral accuracy.

4.2.3 Stability

To see that the results quoted above for the local error carry over to the global error as we refine the
gridl'we also need to check that the method is stable. Using the matrix interpretation of the method
this is easy to do in the 2-norm. The matrix B in (4.9) is easily seen to be symmetric (recall that
R™! = 2hR = 2hRT and so the 2-norm of B~! is equal to its spectral radiusI'which is clearly 1/7>
independent of h. Hence the method is stable in the 2-norm.

4.2.4 Collocation property

Though it may not be obviousI'the approximation we derived above for U(z) in fact satisfies U" (z;) =
f(z;) at each of the points x1 through z,,. In other words this spectral method is also a special form
of a collocation methodI'as described in Section 4.1.

4.3 The finite element method

The finite element method determines an approximate soution that is a linear combination of some
specified basis functions in a very different way from collocation or expansion in eigenfunctions. This
method is typically based on some “weak form” of the differential equationl’which roughly speaking
means that we have integrated the equation.

ConsiderTfor examplel'the heat conduction problem in one dimension with a variable conductivity
k(z) so the steady-state equation is

(k') = f. (4.10)

Again for simplicity assume that the boundary conditions are u(0) = u(1) = 0. If we multiply both
sides of the equation (4.10) by an arbitrary smooth function v(z) and integrate the resulting product
over the domain [0, 1]T'we obtain

/O(R(a:)u'(:r))’v(a:)da::/o f(@)v(z) dz. (4.11)

On the left-hand side we can integrate by parts. Since v is arbitraryl'let’s restrict our attention to v
that satisfy v(0) = v(1) = 0 so that the boundary terms drop outI'yielding

—/0 k(z)u' (z)v'(x) da::/o f(z)v(z) de. (4.12)

It can be shown that if u(z) satisfies this equation for all v in some suitable class of functionsI'then
u(z) is in fact the solution to the original differential equation.
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Now suppose we replace u(z) by an approximation U(z) in this expression['where U(z) is a linear
combination of specified basis functionsI’

Ula) =3 i), (4.13)

Let’s suppose that our basis functions are chosen to satisfy ¢;(0) = ¢;(1) = 0T'so that U(z) automati-
cally satisfies the boundary conditions regardless of how we choose the ¢;. Then we could try to choose
the coefficients ¢; in U(z) so that the equality (4.12) is satisfied for a large class of functions v(x). Since
we only have m free parametersI'we can’t require that (4.12) be satisfied for all smooth functions v(z)I’
but we can require that it be satisfied for all functions in some m-dimensional function space. Such a
space is determined by a set of m basis functions ¢;(z) (which might or might not be the same as the
functions ¢;(z)). If we require that (4.12) be satisfied for the special case where v is chosen to be any
one of these functionsI'then by linearity (4.12) will also be satisfied for any v that is an arbitrary linear
combination of these functionsI'and hence for all v in this m-dimensional linear space.
Hence we are going to require that

1 m 1
- [ o) | L ad @) | viwrds = [ e d (114)
0 Jrary 0
fori=1, 2, ..., m. We can rearrange this to give

ZKijcj: /0 f(@)e;(x) dz (4.15)

where
1
Kij= - [ 5(@)d}@)i(z) da. (416)
0
The equations (4.15) for i =1, 2, ..., m give an m X m linear system of equations to solve for the ¢;T’
which we could write as
Ke=F
with
1
F; :/ f(z)¢i(z) de. (4.17)
0

The functions 1; are generally called “test functions” while the basis functions ¢; for our approximate
solution are called “trial functions”. Frequently the same basis functions are used for both spaces. The
resulting method is known as the Galerkin method. If the trial space is different from the test space we
have a Petrov-Galerkin method.

Example 4.3. As a specific examplel'consider the Galerkin method for the above problem with
basis functions defined as follows on a uniform grid with z; = ihI'and h = 1/(m + 1). The j’th basis
function ¢;(z) is

(:n—a:j_l)/h if Tj—1 SHZSHZ]
¢j(@) =¢ (@jy1 —a)/h if z; <z <z (4.18)
0 otherwise

Each of these functions is continuous and piecewise linearI'and ¢;(z) takes the value 1 at x; and the
value 0 at all other nodes z; for i # j. (See Figure 4.1(a).) Note that any linear combination (4.13) of
these functions will still be continuous and piecewise linearI'and will take the value x; at the point z;
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Figure 4.1: (a) Two typical basis functions ¢;_1 (z) and ¢;(z) with continuous piecewise linear elements.
(b) U(z)Ta typical linear combination such basis functions.

since U(z;) = )_; ¢j¢;(xi) = ¢; since all other terms in the sum are zero. Hence the function U() has
the form shown in Figure 4.1(b).

The set of functions {¢;(z)} form a basis for the space of all continuous piecewise linear functions
defined on [0, 1] with «(0) = u(1) = 0 and with kinks at the points x1, x2, ..., x,I'which are called
the nodes. Note that the coefficient c¢; can be interpreted as the value of the approximate solution at
the point ;.

To use these basis functions in the Galerkin equations (4.14) (with ¢; = ¢;)['we need to compute
the derivatives of these basis functions and then the elements of the matrix K and right-hand side F'.
We have

l/h if Tj—1 SHZS.T]
¢)'(m) = —l/h if Zj S Xz S Tjt1
0 otherwise.
For general functions x(z) we might have to compute an approximation to the integral in (4.16)I'but

as a simple example consider the case k(xz) = 1 (so the equation is just u”(z) = f(z). Then we can
compute that

| 1/h  ifj=i—Tlorj=i+]1,
Kij=- [ $@oiade=1 ~2/n it j=i,

0 0 otherwise.

The matrix K is quite familiar (except for the different power of h):

S -

1 -2 1
1 1 -2 1
K=- . 4.19
- (4.19)
1 -2 1
- 1 _2 =

In some cases we may be able to evaluate the integral in (4.17) for F; explicitly. More generally we

might use a discrete approximation. Note that since ¢;(x) is nonzero only near z;land fol ¢i(x)dz = hD
this is roughly

In fact the trapezoidal method applied to this integral on the same grid would give exactly this result.
Using (4.20) in the system K¢ = FTand dividing both sides by hI'gives exactly the same linear system
of equations that we obtained in Section 2.4 from the finite difference method (for the case a = 3 =10
we are considering here).

Exercise 4.1 If we have more general Dirichlet boundary conditions u(0) = a and u(1) = 3, we can
introduce two additional basis functions ¢o(x) and ¢my1(x) which are also defined by (4.18). Then we
know co = a and c¢,qp1 = [ and these terms in the extended sum appearing in (4.12) can be moved
to the right hand side. Carry this through to see thal we get essentially the system (2.9) in this more
general case as well.
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Some comments on this method:

e The matrix K above is tridiagonal because each ¢;(z) is nonzero on only two elementsI'for
zj1 <z < zjy1. The function ¢;(z)¢}(z) is identically zero unless j =i —1, i or i + 1. More
generallyl'if we choose basis functions that are nonzero only on some region z;_, < & < T4,
then the resulting matrix would be banded with b diagonals of nonzeros below the diagonal and
a bands above. In the finite element method one almost always chooses local basis functions of
this sortI'that are each nonzero over only a few elements.

e Why did we integrate by parts to obtain equation (4.12)I'rather than working directly with (4.11)?
One could go through the same process based on (4.11)I'but then we would need an approximate
U(z) with meaningful second derivatives. This would rule out the use of the simple piecewise
linear basis functions used above. (Note that the piecewise linear functions don’t have meaningful
first derivatives at the nodesI'but since only integrals of these functions are used in defining the
matrix this is not a problem.)

o This is one advantage of the finite element method over collocationI'for example. One can often
use functions U(x) for which the original differential equation does not even make sense because
U is not sufficiently smooth.

e There are other good reasons for integrating by parts. The resulting equation (4.12) can also be
derived from a variational principle and has physical meaning in terms of minimizing the “energy”
in the system. (Seel'e.g.I'[SF73].)

4.3.1 Two space dimensions

In the last example we saw that the one-dimensional finite element method based on piecewise linear
elements is equivalent to the finite difference method derived in Section 2.4. Since it is considerably
more complicated to derive via the finite element approachI'this may not seem like a useful technique.
Howeverl'in more than one dimension this method can be extended to irregular grids on complicated
regions for which it would not be so easy to derive a finite difference method.

ConsiderTfor examplel'the Poisson problem with homogeneous Dirichlet boundary conditions on the
region shown in Figure 4.2I'which also shows a fairly coarse “triangulation” of the region. The points
(x,y;) at the corners of the triangles are called nodes. The Galerkin form of the Poisson problem is

_//qu.vvdg;dy://ﬂfvdxdy. (4.21)

This should hold for all test functions v(z,y) in some class. Again we can approximate u(z,y) by some
linear combination of specified basis functions:

N
Ule,) = 3 es6s(au). (422)

Taking an approach analogous to the one-dimensional case aboveI'we can define a basis function ¢;(z,y)
associated with each node (x;,y;) to be the unique function that is linear on each triangleI'and which
takes the value 1 at the node (xj,y;) and 0 at all other nodes. This function is continuous across the
boundaries between triangles and nonzero only for the triangles that have Node j as a corner. For
examplel'Figure 4.2 indicates contour lines for the basis function ¢g(z,y) as dashed lines.

Using (4.22) in (4.21) gives an N x N linear system of the form K¢ = F where

Kij = —//Qw)j-w)i dz dy. (4.23)

These gradients are easy to compute and in fact are constant within each triangle since the basis function
is linear there. Since V¢; is identically zero in any triangle for which Node ¢ is not a corner'we see
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Figure 4.2: Triangulation of a two-dimensional region with 11 nodes. Contourlines for the basis function
¢s(z,y) are also shown as dashed lines.

that K;; = 0 unless Nodes ¢ and j are two corners of a common triangle. For examplel'in Figure 4.2
the eighth row of the matrix K will have have nonzeros only in columns 6I'7'8T'10I'and 11.

Note also that K will be a symmetric matrixI'since the expression (4.23) is symmetric in ¢ and j.
It can also be shown to be positive definite.

For a typical triangulation on a much finer gridl’'we would have a large but very sparse matrix K.
The structure of the matrixI"howeverI'will not generally be as simple as what we would obtain with a
finite difference method on a rectangular grid. The pattern of nonzeros will depend greatly on how we
order the unknowns and equations. Direct methods for solving such systems rely greatly on algorithms
for ordering them to minimize the bandwidth. See [DERS&6].



