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266 Appendix B. Polynomial Interpolation and Orthogonal Polynomials
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Figure B.1. The Chebyshev polynomial T7.x/ of degree 7.
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Figure B.2. The Chebyshev polynomial viewed as a function Cm.!/ on the unit
disk ei! and when projected on the x-axis, i.e., as a function of x D cos.!/. Shown for
m D 15.

Property 3. Consider the function

Cm.!/ D Re.eim! / D cos.m!/ (B.28)

for 0 ! ! ! " . We can view this as a function defined on the upper half of the unit circle in
the complex plane. If we identify x D cos.!/ or ! D arccos x, then this reduces to (B.26),
so we can view the Chebyshev polynomial on the interval Œ"1; 1# as being the projection of
the function (B.28) onto the real axis, as illustrated in Figure B.2. This property is useful
in relating polynomial interpolation at Chebyshev points to trigonometric interpolation at
equally spaced points on the unit circle and allows the use of the Fast Fourier Transform
(FFT) algorithm to efficiently implement Chebyshev spectral methods. Orthogonality of
the Chebyshev polynomials with respect to the weight function (B.22) also can be easily
interpreted in terms of orthogonality of the trigonometric functions cos.m!/ and cos.n!/.



 
 
 
 
 



 
 

Review of DFT – Chebyshev relationships 
 

Chebyshev      Fourier 
 
x = cos θ,  1 ≥ x ≥ -1    θ,  0 ≤ θ ≤ π (even extn to 0 ≤ θ ≤ 2π) 
 
Tn(x)      cos nθ  
 
Chebyshev points xj = cos θj, j=0,…,N θj = jπ/N,  j=0,…, 2N-1 

QN(x) = q̂n
n=0

N

∑ Tn (x)     qN(θ) = q̂n
n=0

N

∑ cosnθ  

 
dQN(x)/dx;  can take any value at x = -1,1 -(1/sin θ)dqN/dθ;   dqN/dθ = 0 at  θ = 0, π 
 
Polynomial interpolation/differentiation Fourier interpolation/differentiation 



  
 
This algorithm can be viewed as an N+1 x N+1   derivative matrix DN operating on the 
vector of function values Qj at the Chebyshev points to give the derivative at those points 
to spectral accuracy.  
 
With some work, the elements of DN can be explicitly computed (Dcheb.m). 
Multiplication by DN is less computationally efficient than using the DFT, but it is 
conceptually easy, fast enough to use for large enough N to achieve high accuracy for 
smooth problems, and flexible for setting up the solution of two-point BVPs. 

 
 
Another way to compute the derivative matrix is by remembering that the Chebyshev 
interpolating function is the unique N’th order polynomial that passes through the given 
values Qj at the vector x of the Chebyshev points, so the form of the p’th derivative at each 
of those points xj can be computed using fdcoeffF(p,x(i),x).  This approach is 
used in RJL’s example BVP_spectral.m 
 

 



 
 

Output of p11.m, showing accuracy of Chebyshev method for differentiation of a smooth function 
 

 
 

Output of p13.m, showing Chebyshev solution (N =16) of ′′u = e4x, u(−1) = u(1) = 0.  
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Output of p13.m, showing Chebyshev solution (N =16) of ′′u = e4x, ′u (−1) = u(1) = 0.  
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