
Von Neumann Analysis of Jacobi and Gauss-Seidel Iterations

We consider the FDA to the 1D Poisson equation on a grid xj covering [0,1] with uniform spacing h,

h−2(uj+1 − 2uj + uj−1) = fj

whose ’exact’ solution (to the FDA) is uj∗. We let e
[k]
j = u

[k]
j − uj∗ be the ’error’ in an iterative solution at

step k = 0, 1, 2, ....

Jacobi

For Jacobi,
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2
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(e

[k]
j−1 + e

[k]
j+1) (1)

Forgetting for the moment about the boundary conditions, this iteration has eigenfunctions exp(iqxj) so we

can seek solutions in the form

e
[k]
j = ak exp(iqxj) (2)

Here a(q) is the amplification factor of wavenumber q, which we’d like to determine. An iteration will be

convergent if |a(q)| < 1 for errors of all wavenumber qn that can be supported by the grid for the given FDA.

In particular, with Dirichlet BCs at x = 0, 1, the error can be expressed (using odd extension plus a DFT)

purely in terms of sines with wavenumbers qn = nπ, n = 1, ...,m. Harmonic n = 1 (q1 = π) corresponds

to a single half-wavelength across the domain, and harmonic m + 1 (qm+1 = π/h) would correspond to a

half-wavelength across a single grid spacing; this is called the Nyquist wavenumber.

Substituting (2) into (1), we obtain an expression for a:

ak+1 exp(iqxj) =
1

2
(ak exp(iq[xj − h]) + ak exp(iq[xj + h])

a = cos(qh) (3)
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Thus the amplification factors of the m wavenumbers supported by the grid are:

an = cos(qnh) = cos(nπh), n = 1, ...,m, h =
1

m+ 1

All of these amplification factors have magnitude less than 1. The lowest wavenumber has a1 = cos(πh) and

the highest wavenumber has am = − cos(πh).

To visualize how the Jacobi iteration affects an error with very long wavelength, consider the action of

the Jacobi iteration of a sequence of errors all of which are 1, i. e. not varying in x at all.

e
[k]
j : 1 1 1 1 1...

e
[k+1]
j : 1 1 1 1 1...

In this limit, the Jacobi iteration is unable to reduce the error.

Similarly , consider the action of the Jacobi iteration of a sequence of errors oscillating with wavelength

2h:

e
[k]
j : +1 − 1 + 1 − 1 + 1...

e
[k+1]
j : −1 + 1 − 1 + 1 − 1...

Again, the Jacobi iteration is unable to reduce the error, though now it flips its sign.

On the other hand, there is a sweet spot at intermediate wavelengths, e. g. 4h:

e
[k]
j : +1 0 − 1 0 + 1...

e
[k+1]
j : 0 0 0 0 0...

For this wavelength a single Jacobi iteration removes all of the error.

The overall convergence rate of the Jacobi iteration is limited by the |a| of the slowest-converging

wavenumber allowed by the grid. This may sound familiar, and in fact it is just the analysis of the previous

lecture with ‘maximum amplification factor’ replacing ‘spectral radius of the iteration matrix G’. We are

just repeating that analysis in a somewhat easier perspective to visualize.
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Gauss-Seidel

For GS,

e
[k+1]
j =

1

2
(e

[k+1]
j−1 + e

[k]
j+1) (4)

For a Von Neumann anaysis, we substitute (2) into (4):

a =
1

2
(a exp(−iqh) + exp(iqh))

a =
exp(iqh))

2− exp(−iqh)
(5)

Now a is a complex function of q, but we can still calculate its magnitude:

|a| = | exp(iqh)|
|2− exp(−iqh)|

=
[
(2− cos qh)2 + sin2 qh

]−1/2
= [5− 4 cos qh]

−1/2
(6)

The convergence of GS is analyzed by calculating an for all the grid-supported wavenumbers qn. One

technical wrinkle is that when a is complex, applying an iteration of GS to a sinusoidal solution which

satisfies the Dirichlet BCs will not exactly preserve its sinusoidal character at the boundaries. Thus, unlike

with Jacobi there is no longer a precise correspondence between the eigenvalues of the iteration matrix G and

the amplification factors an of the m grid-supported wavenumbers. Nevertheless, the analysis still provides

(and motivates) and correct answers in the limit of large m.

The lowest grid-supported wavenumber q1 = π gives the largest a. Assuming πh << 1,

ρGS = |a1| = [5− 4 cosπh]
−1/2 ≈

[
5− 4(1− π2h2/2)

]−1/2
=

[
1 + π2h2/2)

]−1/2 ≈ 1− π2h2 (7)

The number of iterations needed for GS to converge to a given tolerance is inversely proportional to

− log ρGS ≈ pi2h2, which is twice as large as − log ρJ . Thus GS converges twice as fast (with half as

many iterations) as Jacobi, as claimed without proof in the last lecture.

The action of GS on very long wavelengths is similar to Jacobi, but for a sequence of errors oscillating

with the wavelength 2h(q = π/h), with exp(iqh) = −1, a = −1/3 for GS compared to -1 for Jacobi, i. e. GS

is able to strongly damp the shortest wavelengths supported by the grid:

e
[k]
j : +1 − 1 + 1 − 1 + 1...

e
[k+1]
j : −1

3
+

1

3
− 1

3
+

1

3
− 1

3
...
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For an error component with an intermediate wavelength 4h for which exp(iqh) = i, a = i/(2 + i) has

magnitude 5−1/2 and hence this error component is also strongly damped at each iteration.

Take-home points

Two important insights from the above analysis are:

1. Both Jacobi and GS are least efficient at dampling the longest-wavelength components of the error,

and this efficiency worsens as the grid spacing h is reduced

2. Both Jacobi and GS overdamp the shortest-wavelength (2h) component of the error, but GS still

decreases its amplitude substantially in each iteration.

Multigrid iteration

The first of these insights inspired the multigrid method to be discussed in a later lecture, in which the FDA

is first formulated on a very coarse grid h = 1/2 (decreasing the error at the longest wavelengths) , on which

a Jacobi or GS iteration is taken, then the grid is refined to spacin h/4, and an iteration is taken on this grid,

etc., until we reach the final desired grid spacing. In each such cycle, the error at all wavelengths is reduced,

greatly speeding up the convergence of the method, and since the coarse-grid iterations involve much less

computation, there is little added overall computational expense. It will turn out that multigrid converges

to the FDA solution of Poisson’s equation in O(logm) flops per grid point, similarly efficient to the DFT

approach, but with much broader applicability (at the expense of much more algorithmic complexity).

SOR iteration

The second of these insights inspired the successive over-relaxation (SOR) method, in which the GS correction

at step k+ 1 is multiplied by a factor ω > 1 that is designed to improve the convergence at long wavelengths

while still keeping |a| < 1 at short wavelengths:

uGS
j =

1

2
(u

[k+1]
j−1 + u

[k]
j+1 − h

2fj)

u
[k+1]
j = u

[k]
j + ω(uGS

j − u[k]j ) (8)
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See RJL4.2.2 for a brief discussion of SOR for the 1D Poisson equation, including the optimal choice

ωopt =
2

1 + sinπh
≈ 2− 2πh,

for which the spectral radius of the SOR iteration matrix G is

ρopt = ωopt ≈ 1− 2πh,

and the required number of iterations to converge to O(h2) error is (remembering h = O(m−1))

kopt = log h/ log ρopt = O(m logm).

This is much more efficient that the O(m2 logm) iterations required for convergence of Jacobi and Gauss-

Seidel, with no increase in complexity. SOR still is much less efficient in 1D than using a tridiagonal solver,

but it is competitive in 2D and superior in 3D than a direct sparse LU solver.
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