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The Conjugate Gradient Method: Supplement to RJL 4.3.3

The conjugate gradient (CG) method is an iterative method for solving Au = f when A is a sparse, positive

definite m×m matrix. This type of problem arises commonly in FDA and FEM discretizations of Poisson’s

equation or other elliptic BVPs.

This is a summary and suppliement to the discussion of CG in RJL, which is a bit lengthy and skips

some key points. Like steepest descents, the strategy is to minimize the functional

φ(u) =
1

2
uTAu− uT f (1)

Both CG and steepest descents can be applied without modification if A is negative definite rather than

positive definite, in which case this is a maximization problem.

Visualizing the functional φ

The minimum is at the exact solution u∗ satisfying Au∗ = f . Let the error of some general u from u∗ be

δ = u− u∗. (2)

Then, noting u∗TA = (ATu∗)T = (Au∗)T = fT ,

φ(u) =
1

2
(δ + (u∗)TA(δ + (u∗)− (δ + u∗)T f

=
1

2
(δTAδ + δTAu∗ + u∗TAδ + u∗TAu∗)− δT f − u∗T f

=
1

2
(δTAδ + δT f + fT δ + u∗T f)− δT f − u∗T f

=
1

2
δTAδ + C, C = −1

2
u∗T f (3)

Since A is spd, it has the diagonalization A = EΛET , where E is the matrix whose columns are the the

eigenvectors corresponding to its eigenvalues λp , and Λ = diag(λp). Setting ν = ET δ, with components νp,

we can write

φ(u) =
1

2

m]∑
p=1

λpν
2
p + C (4)
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This implies that φ is a paraboloidal function of u centered on u∗ and that the isosurfaces of φ are ellipsoids

with principal axes along the eigenvectors. The longest axis of the ellipsoid corresponds to the smallest

eigenvalue λ1 and the shortest axis of the ellipsoid corresponds to the largest eigenvalue λm. The maximum

ratio between the longest and shortest axis of an ellipsoidal isosurface of φ is equal to the condition number

κ = λm/λ1 of A.

If u is restricted to any subspace, the isosurfaces of φ within this subspace will also be ellipsoidal, with

a unique û that minimizes φ over the subspace.

Use of A-conjugate search directions

Through sparse matrix multiplications Au, we want to discover and make use of the structure of φ as we

iterate toward a minimum, and to do so more efficiently than using steepest descents. Rather than using

a downgradient search direction, CG makes use of the following key realization. Let pk−1 be the search

direction at iteration k − 1 and let uk be the point along this search direction which minimizes φ. At this

point, pk−1 must be tangent to the φ isosurface. Thus, the downgradient direction, which is along the

residual rk = f −Auk, must be orthogonal to pk−1.

The ideal new search direction would be exactly in the direction u∗ − uk. We don’t know u∗. However,

we do know that

0 = pT
k−1rk

= pT
k−1(f −Auk)

= pT
k−1A(u∗ − uk) (5)

That is, the ideal search direction is A-conjugate to the prior search direction pk−1. Although we don’t know

this ideal search direction, this motivates always choosing a search direction pk that is A-conjugate to the

prior search direction pk−1.

Now suppose that starting with an initial guess u0, we could somehow sequentiallly define a set of search

directions pk for line minimization of φ such that each new search direction is A-conjugate to all the prior
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search directions pj , j = 0..., k− 1. If we let Sk be the k-dimensional subspace that includes the current and

all prior iterates uj , j = 0, ..., k, then we show below that uk will minimize φ over that entire subspace (not

just along the search line). Thus we are guaranteed to reach the exact solution in m iterations, when we will

have minimized φ over the entire m-dimensional space Rm.

The proof is by induction. For k = 1, S1 consists of the single search direction p1 away from the initial

guess u0, and u1 is constructed to minimize φ along this line, Now assume that uk−1 minimizes φ over the

subspace Sk−1. Also assume the new search direction pk−1 is A-conjugate to all the prior search directions

pj , j = 0..., k − 2. Then we must prove uk minimizes φ over the subspace Sk.

To show this, it suffices to show that −∇φ(uk) has no projection into Sk, i. e. that rk = −∇φ(uk)

is orthogonal to a set of k independent basis vectors that define Sk. One such set is the search directions

pj , j = 0, ..., k − 1. Thus, we will show that

0 = pT
j rk, j = 0, ..., k − 1

This claim can be verified as follows. Because of the line minimization, rk is orthogonal to pk−1. Since uk−1

minimizes φ over the subspace Sk−1,

0 = pT
j rk−1, j = 0, ..., k − 2

Hence, for j = 0, ..., k − 2,

pT
j rk = pT

j rk−1 + pT
j (rk − rk−1)

= 0− pT
j A(uk − uk−1)

= −αk−1p
T
j Apk−1 = 0 (6)

by the assumed A-conjugacy of the search directions. This shows uk minimizes φ over the subspace Sk and

completes the induction step.

The CG algorithm is a simple way of choosing the successive search directions to have this A-conjugacy

property.
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The CG iteration

Starting at the initial guess u0, we choose an initial search direction p0 = r0 down the gradient of φ.

For each succeeding iteration k = 1, 2, ...,m, loop through the following steps:

1. Find the αk−1 for which uk = uk−1 + αk−1pk−1 minimizes φ along the search path pk−1.

2. Calculate the residual rk

3. Declare convergence and exit loop if rk is small enough.

4. Otherwise, use search direction pk = rk +βk−1pk−1 with βk−1 chosen to make pk A-conjugate to pk−1

What we need to show is that this choice of pk is also A-conjugate to all the previous search directions

pj , j = 0, ..., k − 2. Consider the expressions for the residual and the new search direction,

rj = f −Auj = f −A(uj−1 − αj−1pj−1) = rj−1 − αj−1Apj−1 (7)

pj = rj + βj−1pj−1 (8)

Starting with j = 0, for which p0 = r0, (7) implies r1 is a linear combination of r0 and Ar0, then (8) implies

this is also true for p1. Iterating in j, we deduce that rj and pj are each linear combinations (i. e. in the

span) of r0, ..., A
jr0. This type of subspace of Rm generated by increasing powers of A acting on a vector is

called a Krylov space.

With this background, we use induction to prove pk is A-conjugate to all the previous search directions

pj , j = 0, ..., k − 1.. For k = 1, p1 is A-conjugate to the only previous search direction p0 by construction.

Assume that pk−1 is A-conjugate to all the previous search directions pj , j = 0, ..., k − 2. Then by (8), for

each of these j’s,

pT
kApj = rTkApj + βk−1 p

T
k−1Apj︸ ︷︷ ︸

0

(9)

Thus to show pk is A-conjugate to each pj , it suffices to show that the residual rk is orthogonal to Apj .

Now Apj is in the span of Ar0, ..., A
j+1r0, which is a subspace of the span of r0, Ar0, ..., A

k−1r0, which

is also the span of p0, ...,pk−1. By the argument in the previous section, since uk minimizes φ over this
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subspace, the residual rk = −∇φ(uk) must be orthogonal to all the pj . This shows that pk is A-conjugate

to the search directions pj , j = 0, ..., k− 2. By construction, it is also A-conjugate to pk−1, so the induction

step is proved.

Computation of αk−1 and βk−1

We choose αk−1 to minimize φ along the line uk = uk−1 + αpk−1. Defining wk−1 = Auk−1, this gives RJL

(4.40):

αk−1 =
pT
k−1rk−1

pT
k−1wk−1

(10)

The numerator can be simplified by noting pk−1 = rk−1 + βk−2pk−2:

pT
k−1rk−1 = rTk−1rk−1 + βk−2 p

T
k−2rk−1︸ ︷︷ ︸

0

(11)

We choose βk−1 to make pk = rk − βk−1pk−1 A-conjugate to pk−1:

βk−1 = − rTkApk−1

pT
k−1Apk−1

(12)

Recalling

αk−1Apk−1 = A(uk − uk−1) = −(rk − rk−1) (13)

and rTk rk−1 = rTk pk−1 = 0, this can be simplified to the form

βk−1 = − rTk (rk − rk−1)

pT
k−1(rk − rk−1)

=
rTk rk

pT
k−1rk−1

=
rTk rk

rTk−1rk−1
(14)

The Matlab script CG.m on the class web page implements these forms (10) (with the simplification (11))

and (14).

Convergence rate of CG

Although CG is only guaranteed to converge in m iterations, for most A’s it converges much faster. RJL

4.3.4 gives some theory that suggests that it typically converges to adequate tolerance in O(κ1/2) iterations,

where κ is the condition number of A. If κ � 1 this is much faster than the O(κ) iterations required for

convergence of steepest descents. For a FDA or FEM to a Poisson problem in one or more dimensions,

κ = O(m2) so CG will converge in O(m) iterations.
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The convergence of CG can be improved by preconditioning the matrix A to reduce its condition number.

RJL 4.3.5-6 discusses some popular choices, including use of an incomplete Cholesky decomposition of A.
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