Bretherton - Amath 585

The Conjugate Gradient Method: Supplement to RJL 4.3.3

The conjugate gradient (CG) method is an iterative method for solving $A\mathbf{u} = \mathbf{f}$ when A is a sparse, positive definite $m \times m$ matrix. This type of problem arises commonly in FDA and FEM discretizations of Poisson's equation or other elliptic BVPs.

This is a summary and suppliement to the discussion of CG in RJL, which is a bit lengthy and skips some key points. Like steepest descents, the strategy is to minimize the functional

$$\phi(\mathbf{u}) = \frac{1}{2}\mathbf{u}^T A \mathbf{u} - \mathbf{u}^T \mathbf{f} \tag{1}$$

Both CG and steepest descents can be applied without modification if A is negative definite rather than positive definite, in which case this is a maximization problem.

Visualizing the functional ϕ

The minimum is at the exact solution \mathbf{u}^* satisfying $A\mathbf{u}^* = \mathbf{f}$. Let the error of some general \mathbf{u} from \mathbf{u}^* be

$$\delta = \mathbf{u} - \mathbf{u}^*. \tag{2}$$

Then, noting $\mathbf{u}^{*T}A = (A^T\mathbf{u}^*)^T = (A\mathbf{u}^*)^T = f^T$,

$$\phi(\mathbf{u}) = \frac{1}{2} (\delta + (\mathbf{u}^*)^T A (\delta + (\mathbf{u}^*) - (\delta + \mathbf{u}^*)^T \mathbf{f}$$

$$= \frac{1}{2} (\delta^T A \delta + \delta^T A \mathbf{u}^* + \mathbf{u}^{*T} A \delta + \mathbf{u}^{*T} A \mathbf{u}^*) - \delta^T \mathbf{f} - \mathbf{u}^{*T} \mathbf{f}$$

$$= \frac{1}{2} (\delta^T A \delta + \delta^T \mathbf{f} + \mathbf{f}^T \delta + \mathbf{u}^{*T} \mathbf{f}) - \delta^T \mathbf{f} - \mathbf{u}^{*T} \mathbf{f}$$

$$= \frac{1}{2} \delta^T A \delta + C, \qquad C = -\frac{1}{2} \mathbf{u}^{*T} \mathbf{f}$$
(3)

Since A is spd, it has the diagonalization $A = E\Lambda E^T$, where E is the matrix whose columns are the the eigenvectors corresponding to its eigenvalues λ_p , and $\Lambda = \operatorname{diag}(\lambda_p)$. Setting $\nu = E^T \delta$, with components ν_p , we can write

$$\phi(\mathbf{u}) = \frac{1}{2} \sum_{p=1}^{m} \lambda_p \nu_p^2 + C \tag{4}$$

This implies that ϕ is a paraboloidal function of \mathbf{u} centered on \mathbf{u}^* and that the isosurfaces of ϕ are ellipsoids with principal axes along the eigenvectors. The longest axis of the ellipsoid corresponds to the smallest eigenvalue λ_1 and the shortest axis of the ellipsoid corresponds to the largest eigenvalue λ_m . The maximum ratio between the longest and shortest axis of an ellipsoidal isosurface of ϕ is equal to the condition number $\kappa = \lambda_m/\lambda_1$ of A.

If **u** is restricted to any subspace, the isosurfaces of ϕ within this subspace will also be ellipsoidal, with a unique $\hat{\mathbf{u}}$ that minimizes ϕ over the subspace.

Use of A-conjugate search directions

Through sparse matrix multiplications $A\mathbf{u}$, we want to discover and make use of the structure of ϕ as we iterate toward a minimum, and to do so more efficiently than using steepest descents. Rather than using a downgradient search direction, CG makes use of the following key realization. Let \mathbf{p}_{k-1} be the search direction at iteration k-1 and let \mathbf{u}_k be the point along this search direction which minimizes ϕ . At this point, \mathbf{p}_{k-1} must be tangent to the ϕ isosurface. Thus, the downgradient direction, which is along the residual $\mathbf{r}_k = f - A\mathbf{u}_k$, must be orthogonal to \mathbf{p}_{k-1} .

The ideal new search direction would be exactly in the direction $\mathbf{u}^* - \mathbf{u}_k$. We don't know \mathbf{u}^* . However, we do know that

$$0 = \mathbf{p}_{k-1}^{T} \mathbf{r}_{k}$$

$$= \mathbf{p}_{k-1}^{T} (\mathbf{f} - A\mathbf{u}_{k})$$

$$= \mathbf{p}_{k-1}^{T} A(\mathbf{u}^{*} - \mathbf{u}_{k})$$
(5)

That is, the ideal search direction is A-conjugate to the prior search direction \mathbf{p}_{k-1} . Although we don't know this ideal search direction, this motivates always choosing a search direction \mathbf{p}_k that is A-conjugate to the prior search direction \mathbf{p}_{k-1} .

Now suppose that starting with an initial guess \mathbf{u}_0 , we could somehow sequentially define a set of search directions \mathbf{p}_k for line minimization of ϕ such that each new search direction is A-conjugate to all the prior

search directions \mathbf{p}_j , j = 0..., k-1. If we let S_k be the k-dimensional subspace that includes the current and all prior iterates \mathbf{u}_j , j = 0, ..., k, then we show below that \mathbf{u}_k will minimize ϕ over that entire subspace (not just along the search line). Thus we are guaranteed to reach the exact solution in m iterations, when we will have minimized ϕ over the entire m-dimensional space R^m .

The proof is by induction. For k = 1, S_1 consists of the single search direction \mathbf{p}_1 away from the initial guess \mathbf{u}_0 , and \mathbf{u}_1 is constructed to minimize ϕ along this line, Now assume that \mathbf{u}_{k-1} minimizes ϕ over the subspace S_{k-1} . Also assume the new search direction \mathbf{p}_{k-1} is A-conjugate to all the prior search directions \mathbf{p}_j , j = 0..., k-2. Then we must prove \mathbf{u}_k minimizes ϕ over the subspace S_k .

To show this, it suffices to show that $-\nabla \phi(\mathbf{u}_k)$ has no projection into S_k , i. e. that $\mathbf{r}_k = -\nabla \phi(\mathbf{u}_k)$ is orthogonal to a set of k independent basis vectors that define S_k . One such set is the search directions $\mathbf{p}_j, j = 0, ..., k-1$. Thus, we will show that

$$0 = \mathbf{p}_i^T \mathbf{r}_k, \qquad j = 0, ..., k - 1$$

This claim can be verified as follows. Because of the line minimization, \mathbf{r}_k is orthogonal to \mathbf{p}_{k-1} . Since \mathbf{u}_{k-1} minimizes ϕ over the subspace S_{k-1} ,

$$0 = \mathbf{p}_{j}^{T} \mathbf{r}_{k-1}, \qquad j = 0, ..., k-2$$

Hence, for j = 0, ..., k - 2,

$$\mathbf{p}_{j}^{T}\mathbf{r}_{k} = \mathbf{p}_{j}^{T}\mathbf{r}_{k-1} + \mathbf{p}_{j}^{T}(\mathbf{r}_{k} - \mathbf{r}_{k-1})$$

$$= 0 - \mathbf{p}_{j}^{T}A(\mathbf{u}_{k} - \mathbf{u}_{k-1})$$

$$= -\alpha_{k-1}\mathbf{p}_{j}^{T}A\mathbf{p}_{k-1} = 0$$
(6)

by the assumed A-conjugacy of the search directions. This shows \mathbf{u}_k minimizes ϕ over the subspace S_k and completes the induction step.

The CG algorithm is a simple way of choosing the successive search directions to have this A-conjugacy property.

The CG iteration

Starting at the initial guess \mathbf{u}_0 , we choose an initial search direction $\mathbf{p}_0 = \mathbf{r}_0$ down the gradient of ϕ .

For each succeeding iteration k = 1, 2, ..., m, loop through the following steps:

- 1. Find the α_{k-1} for which $\mathbf{u}_k = \mathbf{u}_{k-1} + \alpha_{k-1} \mathbf{p}_{k-1}$ minimizes ϕ along the search path \mathbf{p}_{k-1} .
- 2. Calculate the residual \mathbf{r}_k
- 3. Declare convergence and exit loop if \mathbf{r}_k is small enough.
- 4. Otherwise, use search direction $\mathbf{p}_k = \mathbf{r}_k + \beta_{k-1}\mathbf{p}_{k-1}$ with β_{k-1} chosen to make \mathbf{p}_k A-conjugate to \mathbf{p}_{k-1}

What we need to show is that this choice of \mathbf{p}_k is also A-conjugate to all the previous search directions \mathbf{p}_j , j=0,...,k-2. Consider the expressions for the residual and the new search direction,

$$\mathbf{r}_{i} = \mathbf{f} - A\mathbf{u}_{i} = \mathbf{f} - A(\mathbf{u}_{i-1} - \alpha_{i-1}p_{i-1}) = \mathbf{r}_{i-1} - \alpha_{i-1}Ap_{i-1}$$

$$\tag{7}$$

$$\mathbf{p}_{j} = \mathbf{r}_{j} + \beta_{j-1} \mathbf{p}_{j-1} \tag{8}$$

Starting with j = 0, for which $\mathbf{p}_0 = \mathbf{r}_0$, (7) implies \mathbf{r}_1 is a linear combination of \mathbf{r}_0 and $A\mathbf{r}_0$, then (8) implies this is also true for \mathbf{p}_1 . Iterating in j, we deduce that \mathbf{r}_j and \mathbf{p}_j are each linear combinations (i. e. in the span) of $\mathbf{r}_0, ..., A^j \mathbf{r}_0$. This type of subspace of R^m generated by increasing powers of A acting on a vector is called a $Krylov\ space$.

With this background, we use induction to prove \mathbf{p}_k is A-conjugate to all the previous search directions \mathbf{p}_j , j=0,...,k-1.. For k=1, \mathbf{p}_1 is A-conjugate to the only previous search direction \mathbf{p}_0 by construction. Assume that \mathbf{p}_{k-1} is A-conjugate to all the previous search directions \mathbf{p}_j , j=0,...,k-2. Then by (8), for each of these j's,

$$\mathbf{p}_k^T A \mathbf{p}_j = \mathbf{r}_k^T A \mathbf{p}_j + \beta_{k-1} \underbrace{\mathbf{p}_{k-1}^T A \mathbf{p}_j}_{0}$$
(9)

Thus to show \mathbf{p}_k is A-conjugate to each \mathbf{p}_j , it suffices to show that the residual \mathbf{r}_k is orthogonal to $A\mathbf{p}_j$.

Now $A\mathbf{p}_j$ is in the span of $A\mathbf{r}_0, ..., A^{j+1}\mathbf{r}_0$, which is a subspace of the span of $\mathbf{r}_0, A\mathbf{r}_0, ..., A^{k-1}\mathbf{r}_0$, which is also the span of $\mathbf{p}_0, ..., \mathbf{p}_{k-1}$. By the argument in the previous section, since \mathbf{u}_k minimizes ϕ over this

subspace, the residual $\mathbf{r}_k = -\nabla \phi(\mathbf{u}_k)$ must be orthogonal to all the \mathbf{p}_j . This shows that \mathbf{p}_k is A-conjugate to the search directions \mathbf{p}_j , j = 0, ..., k - 2. By construction, it is also A-conjugate to \mathbf{p}_{k-1} , so the induction step is proved.

Computation of α_{k-1} and β_{k-1}

We choose α_{k-1} to minimize ϕ along the line $\mathbf{u}_k = \mathbf{u}_{k-1} + \alpha \mathbf{p}_{k-1}$. Defining $\mathbf{w}_{k-1} = A\mathbf{u}_{k-1}$, this gives RJL (4.40):

$$\alpha_{k-1} = \frac{\mathbf{p}_{k-1}^T \mathbf{r}_{k-1}}{\mathbf{p}_{k-1}^T \mathbf{w}_{k-1}} \tag{10}$$

The numerator can be simplified by noting $\mathbf{p}_{k-1} = \mathbf{r}_{k-1} + \beta_{k-2} \mathbf{p}_{k-2}$:

$$\mathbf{p}_{k-1}^{T}\mathbf{r}_{k-1} = \mathbf{r}_{k-1}^{T}\mathbf{r}_{k-1} + \beta_{k-2}\underbrace{\mathbf{p}_{k-2}^{T}\mathbf{r}_{k-1}}_{0}$$
(11)

We choose β_{k-1} to make $\mathbf{p}_k = \mathbf{r}_k - \beta_{k-1} \mathbf{p}_{k-1}$ A-conjugate to \mathbf{p}_{k-1} :

$$\beta_{k-1} = -\frac{\mathbf{r}_k^T A \mathbf{p}_{k-1}}{\mathbf{p}_{k-1}^T A \mathbf{p}_{k-1}} \tag{12}$$

Recalling

$$\alpha_{k-1}A\mathbf{p}_{k-1} = A(\mathbf{u}_k - \mathbf{u}_{k-1}) = -(\mathbf{r}_k - \mathbf{r}_{k-1})$$

$$\tag{13}$$

and $\mathbf{r}_k^T \mathbf{r}_{k-1} = \mathbf{r}_k^T \mathbf{p}_{k-1} = 0$, this can be simplified to the form

$$\beta_{k-1} = -\frac{\mathbf{r}_k^T(\mathbf{r}_k - \mathbf{r}_{k-1})}{\mathbf{p}_{k-1}^T(\mathbf{r}_k - \mathbf{r}_{k-1})} = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{p}_{k-1}^T \mathbf{r}_{k-1}} = \frac{\mathbf{r}_k^T \mathbf{r}_k}{\mathbf{r}_{k-1}^T \mathbf{r}_{k-1}}$$
(14)

The Matlab script CG.m on the class web page implements these forms (10) (with the simplification (11)) and (14).

Convergence rate of CG

Although CG is only guaranteed to converge in m iterations, for most A's it converges much faster. RJL 4.3.4 gives some theory that suggests that it typically converges to adequate tolerance in $O(\kappa^{1/2})$ iterations, where κ is the condition number of A. If $\kappa \gg 1$ this is much faster than the $O(\kappa)$ iterations required for convergence of steepest descents. For a FDA or FEM to a Poisson problem in one or more dimensions, $\kappa = O(m^2)$ so CG will converge in O(m) iterations.

The convergence of CG can be improved by preconditioning the matrix A to reduce its condition number.

 $\mathrm{RJL}\ 4.3.5\text{-}6$ discusses some popular choices, including use of an incomplete Cholesky decomposition of A.