Example: Refraction of an oblique light wave by a change in refractive index \(N(z) \)

Consider a medium unbounded in \(x \) and \(z \) whose refractive index is constant for \(z < z_1 \), then smoothly increases from \(N_1 \) to \(N_2 \) in \(z_1 < z < z_2 = z_1 + H \), and is constant for \(z > z_2 \). In this example, we use WKB (dimensional form) to calculate what happens to a short wavelength wave impinging on this refractive index gradient, as in the sketch to the right.

The electrical potential \(u(x, z, t) \) obeys the 2D wave equation

\[
u_{xx} + u_{zz} - \frac{N^2(z)}{c_0^2} u_{tt} = 0 \tag{11.1}\]

We consider a planar monochromatic light wave \(u(x, z, t) = A \exp(ikx + im_1z - i\omega t) \) in the region \(z < z_1 \) propagating obliquely up and right toward the refractive index gradient in the direction \(\mathbf{k} = ki + m_1j \) of its vector wavenumber, which has an incidence angle \(\theta_1 = \cot^{-1}(m_1/k) \) away from the vertical.

To satisfy (11.1) for \(z < z_1 \), the wave frequency \(\omega \) must obey the dispersion relation

\[
k^2 + m_1^2 = \frac{N_1^2 \omega^2}{c^2} \tag{11.2}\]

What happens to the wave when it hits the gradient region? A solution to (11.1) of this structure can be sought in the form \(u(x, z, t) = e^{i(kx-\omega t)}y(z) \):

\[
0 = \frac{d^2y}{dz^2} + \left(\frac{N^2(z)\omega^2}{c_0^2} - k^2 \right) y, \quad \text{where } y(z) \sim A \exp(im_1z) \text{ as } z \to -\infty \tag{11.3}\]

Using the dispersion relation (11.2), we can write

\[
m^2(z) = \frac{N^2(z)\omega^2}{c_0^2} - k^2 = \frac{N_1^2(z)}{N_1^2} \left(k^2 + m_1^2 \right) - k^2 = k^2 \left(\frac{N_1^2(z)}{N_1^2 \sin^2 \theta_1} - 1 \right). \tag{11.4}\]

When \(kH \ll 1 \), the wavelength will be short compared to the length scale of the refractive index change, so we can apply the formula (10.6b) (except with \(k, x \) replaced by \(m_1, z \)) to obtain WKB approximations to the two linearly independent solutions:
\[y^\pm(z) = |m(z)|^{-1/2} \exp \left\{ \pm i \int_{z_0}^z m(\zeta) d\zeta \right\} \left\{ 1 + O(m'/m^2) \right\} \]

Note that since \(N^2(z) \) is \(O(1) \) and varies over a distance \(H \), (11.4) implies that \(m = O(k) \) and \(m' = O(k/H) \), so \(m'/m^2 = O(1/kH) \).

To match the form of the incident wave as \(z \to -\infty \), we take \(A \) times the positive solution:

\[y(z) = A|m(z)|^{-1/2} \exp \left\{ \int_{z_0}^z m(\zeta) d\zeta \right\} \left\{ 1 + O(1/kH) \right\}, \quad kH \gg 1 \quad (11.5) \]

which can be redimensionalized to the form

\[u(x,z,t) = A|m(z)|^{-1/2} \exp \left\{ kx + \int_{z_0}^z m(\zeta) d\zeta - \omega t \right\} \left\{ 1 + O(\frac{1}{kH}) \right\} \quad (11.6) \]

Thus, the WKB asymptotic solution is a sinusoidal wave whose vertical wavenumber \(m(z) \) changes as it moves across the refractive index gradient. This bends the direction of wave propagation (wave refraction). According to (11.4), \(m \) increases as \(N \) increases; in fact from (11.4) it is easy to show Snell’s law that the angle of incidence of the wave obeys \(N(z) \sin \theta = N_1 \sin \theta_1 \).

Fig. 11.3 shows \(\text{Re}(u) \) for a specific example

\[N(z) = N_1 + (N_2 - N_1) \left\{ \text{erf}(z) + 1 \right\} / 2, \quad N_1 = 1, \quad N_2 = 2 \quad (11.7) \]

in which \(N \) changes over roughly over a distance \(H = 2 \) between \(z_1 = -1 \) and \(z_2 = 1 \) with an incident wave with \(k = m_1 = 2\pi \) so \(kH = 4\pi \gg 1 \), so WKB is quite accurate. Note the refraction of the wave toward the vertical as well as the amplitude reduction where \(N \) is larger.

If \(N \) increases with \(z \) as in this example, the WKB approximate solution consists purely of an upward-propagating wave. That is, there is no wave reflection in the WKB asymptotic limit that the wavelength is much shorter than the length scale \(H \) of the refractive index change. This can be contrasted to a step increase in refractive index (i.e. over a distance much shorter than the wavelength), which can be shown by direct solution of (11.3) to create a reflected wave of amplitude \((N_2 - N_1) / (N_2 + N_1) = 1/3\) in this case, as well as a transmitted refracted wave. In general, partial reflection not predicted by the WKB approximation will occur wherever the medium varies over length scales shorter than a wavelength of the wave.
Fig. 11.3: WKB solution for wave refraction across a smooth increase in refractive index from 1 to 2 across the region between the blue dashed lines.