1.a. Given:

\[
\frac{H}{L} << 1 \\
R_o = \frac{U}{H} << 1
\]

low Mach number
characteristic density \(\rho_{oo} = [\rho] \)

Define \(\rho = \rho_o(z) + \rho'(x,t) \), \(p = p_o(z) + p'(x,t) \) such that \(\rho_o \) and \(p_o \) are in hydrostatic balance.

Let \(\frac{\partial \rho}{\partial t} = \frac{1}{T} = \frac{U}{L} \)

Assume \(\rho' << \rho_{oo} \)

\(W = U \frac{H}{L} \)

Scaling the material derivative of velocity:

\[
\begin{align*}
\frac{Du}{Dt} &= \frac{\partial u_H}{\partial t} + \frac{\partial w}{\partial t} + u_H \cdot \nabla u_H + w \frac{\partial w}{\partial z} \\
\begin{bmatrix}
\frac{Du}{Dt}
\end{bmatrix} &= \frac{U^2}{L} + \frac{U^2}{L} \frac{H}{L} + \frac{U^2}{L} \frac{H}{L} + \frac{U^2}{L} \frac{H}{L}
\end{align*}
\]

Since \(\frac{H}{L} << 1 \), the second and fourth terms are negligible, leaving

\[
\begin{bmatrix}
\frac{Du}{Dt}
\end{bmatrix} = \frac{U^2}{L}
\]

Scaling the horizontal momentum equation:

\[
\rho \frac{Du_H}{Dt} - \rho f(v_i - u_j) = -\nabla_H p'
\]
\[
\frac{\rho_oo}{L} \frac{U^2}{L} + \Omega U = \frac{[p']}{L} \\
[p'] = \rho_oo U^2 + \rho_oo L\Omega U
\]

Now scaling the **vertical momentum** equation:

\[
\begin{align*}
\rho Dw &= -\frac{\partial p'}{\partial z} - \rho' g \\
\rho_oo \frac{WU}{L} &= \frac{[p']}{H} + [\rho']g \\
\rho_oo U^2 \frac{H^2}{L^2} &= \rho_oo U^2 + \rho_oo L\Omega U + [p']gH
\end{align*}
\]

Dividing the LHS from the first term on the RHS:

\[
\frac{\rho_oo U^2 H^2}{\rho_oo U^2} = \frac{H^2}{L^2} << 1
\]

So the term on the LHS is negligible. Dividing the first term on the RHS from the second (both are parts of \([p']\)):

\[
\frac{\rho_oo U^2}{\rho_oo L\Omega U} = \frac{U}{fL} = R_o << 1
\]

Now all we have left in the vertical momentum balance is:

\[
[p'] = \rho_oo L\Omega U = [\rho']gH
\]

1.b. Apply the scalings

i) Midlatitude storms

\[
\begin{align*}
[p'] &= [\rho']gH \\
[p'] &= (0.05)(10)(10^4) = 5000 \text{ Pa} = 50 \text{ mbar} \\
U &= \frac{[\rho']gH}{\rho_oo L\Omega} \\
U &= \frac{5000}{(1)(2 \times 10^9)(10^{-4})} = 25 \text{ m s}^{-1}
\end{align*}
\]

ii) The Gulf Stream
\[[p'] = [\rho'] gH, \quad [\rho'] = \rho_{oo}\alpha \Delta T = (1000)(1.7 \times 10^{-4})(10) = 1.7 \text{ kg m}^{-3} \]

\[[p'] = (1.7)(10)(10^3) = 1.7 \times 10^4 \text{ Pa} \]

\[U = \frac{[\rho'] gH}{\rho_{oo} L \Omega} \]

\[U = \frac{1.7 \times 10^4}{(1000)(10^5)(10^{-4})} = 1.7 \text{ m s}^{-1} \]

1.c. First find \([u_g]\) from the definition of geostrophic velocity:

\[
\begin{align*}
\rho_{oo} f k \times u_g &= -\nabla_H p' \\
\rho_{oo} \Omega [u_g] &= \frac{[p']}{L} \\
[u_g] &= \frac{\rho_{oo} L \Omega U}{\rho_{oo} L} \\
[u_g] &= U
\end{align*}
\]

Now separate the horizontal momentum equation into geostrophic and ageostrophic parts:

\[
\begin{align*}
\rho \frac{Du_H}{Dt} + \rho f k \times u_g + \rho f k \times u_{ag} &= -\nabla_H p' \\
\rho \frac{Du_H}{Dt} &= -\rho f k \times u_{ag} \\
\frac{U^2}{L} &= \Omega [u_{ag}] \\
[u_{ag}] &= \frac{U^2}{\Omega L} = U \frac{R_o}{L}
\end{align*}
\]

1.d. Starting with the Boussinesq continuity equation and separating the horizontal velocity into geostrophic and ageostrophic components:

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} &= 0 \\
\frac{\partial u_g}{\partial x} + \frac{\partial u_{ag}}{\partial x} + \frac{\partial v_g}{\partial y} + \frac{\partial v_{ag}}{\partial y} + \frac{\partial w}{\partial z} &= 0
\end{align*}
\]

Since purely geostrophic velocities have no horizontal divergence:
\[
\frac{\partial u_{ag}}{\partial x} + \frac{\partial v_{ag}}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

\[
\frac{[u_{ag}]}{L} = \frac{W}{H}
\]

\[
W = R_o \frac{H}{L}
\]

Applying the scalings,

i) Midlatitude storms

\[
W = R_o \frac{H}{L} = \frac{U^2 H}{L^2 \Omega}
\]

\[
W = \frac{(25)^2(10)(1000)}{(2 \times 10^6)^2(10^{-4})} = 0.016 \text{ m s}^{-1}
\]

ii) Gulf Stream

\[
W = R_o \frac{H}{L} = \frac{U^2 H}{L^2 \Omega}
\]

\[
W = \frac{(1.7)^2(1000)}{(10^5)^2(10^{-4})} = 0.0029 \text{ m s}^{-1}
\]

2.a. This problem is similar to the example on page 13a of the lecture notes. Instead of a constant forcing, the forcing \(F_x = \frac{\tau}{\rho H} \) increases linearly, then becomes constant.

\[
\tau(t) \begin{cases}
\frac{\tau_0}{T}; & 0 \leq t \leq T \\
\frac{\tau_0}{T}; & t > T
\end{cases}
\]

The horizontal momentum equations are given by:

\[
\frac{\partial u}{\partial t} - fv = \frac{\tau}{\rho H}
\]

\[
\frac{\partial v}{\partial t} + fu = 0
\]

Setting \(s = u + iv \):
\[
\frac{ds}{dt} = \frac{du}{dt} + i \frac{dv}{dt} = (fv + \frac{\tau}{\rho H} + i(-fu))
= \frac{\tau}{\rho H} - if(u + iv)
\rightarrow \frac{ds}{dt} + ifs = \frac{\tau}{\rho H}
\]

For time \(0 \leq t \leq T\), the forcing term is a linear function of time, resulting in a nonhomogenous ODE. The solution can be obtained by splitting it into complementary and particular parts such that \(s = s_c + s_p\). The complementary part of the solution is the solution to the ODE with no forcing:

\[
\frac{ds_c}{dt} + ifs_c = 0
\]
\[
s_c = ce^{-ift}
\]

The particular part of the solution can be found by the method of undetermined coefficients. Since the forcing is linear, we guess a linear solution \(s_p = at + b\):

\[
\frac{ds_p}{dt} + ifs_p = \left(\frac{\tau_o}{\rho H}\right) \frac{t}{T}
\]
\[
a + ifs(at + b) = \left(\frac{\tau_o}{\rho H}\right) \frac{t}{T}
\]

\[
\rightarrow a = \left(\frac{\tau}{\rho H}\right) \frac{1}{ift} \quad \frac{\tau_o}{\rho H}
\]
\[
b = \left(\frac{\tau_o}{\rho H}\right) \frac{1}{f^2T}
\]

The solution therefore has the form:

\[
s = ce^{-ift} + \left(\frac{\tau_o}{\rho H}\right) \frac{t}{ift} + \left(\frac{\tau_o}{\rho H}\right) \frac{1}{f^2T}
\]

The constant \(c\) can be found by applying the initial condition \(s(0) = 0\), leaving an exact solution

\[
s = -\left(\frac{\tau_o}{\rho H}\right) \frac{1}{Tf^2} \left[\cos (ft) - i \sin (ft) - i \left(\frac{\tau_o}{\rho H}\right) \frac{t}{fT} + \left(\frac{\tau_o}{\rho H}\right) \frac{1}{f^2T}\right]
\]
Therefore u and v are

\[
\begin{align*}
 u &= \left(\frac{\tau_0}{\rho H} \right) \frac{1}{f^2T} \left[\cos (ft) \right] \\
 v &= \left(\frac{\tau_0}{\rho H} \right) \frac{1}{fT} \left[\frac{1}{f} - t \right]
\end{align*}
\]

for time $0 \leq t \leq T$.

By integrating either s or u and v, and using the initial condition that $x, y = 0$ at $t = 0$, the positions x and y can be found:

\[
\begin{align*}
 x &= \left(\frac{\tau_0}{\rho H} \right) \frac{1}{f^2T} [t - \sin (ft)] \\
 y &= \left(\frac{\tau_0}{\rho H} \right) \frac{1}{f^2T} \left[\frac{1}{f} - t - \frac{1}{2} f^2 + \cos (ft) \right]
\end{align*}
\]

for time $0 \leq t \leq T$. At time $t > T$, the forcing is constant:

\[
\frac{ds}{dt} + ifs = \frac{\tau_0}{\rho H}
\]

\[
\rightarrow s = \left(\frac{\tau_0}{\rho H} \right) \frac{1}{if} \left[1 - e^{-if(t-T)} \right]
\]

At time T, the velocity and position are known from the solution for time $0 \leq t \leq T$. Let us define u_T, v_T, x_T, y_T as the velocity and position at time T. Applying the initial condition $s(T) = s_T = u_T + iv_T$ gives the exact solution for s:

\[
\begin{align*}
s &= \left(\frac{\tau_0}{\rho H} \right) \frac{1}{if} \left[1 - (1 - \left(\frac{\rho H}{\tau_0} \right) ifs_T) e^{-if(t-T)} \right] \\
 &= -\frac{i}{f} \left(\frac{\tau_0}{\rho H} \right) + i \left(\frac{\tau_0}{\rho H} \right) \cos [f(t-T)] + \frac{1}{f} \left(\frac{\tau_0}{\rho H} \right) \sin [f(t-T)] + u_T \cos [f(t-T)] \\
 &\quad - iu_T \sin [f(t-T)] + iv_T \cos [f(t-T)] + v_T \sin [f(t-T)]
\end{align*}
\]

\[
\begin{align*}
 \rightarrow u &= \frac{1}{f} \left(\frac{\tau_0}{\rho H} \right) \sin [f(t-T)] + u_T \cos [f(t-T)] + v_T \sin [f(t-T)] \\
 v &= -\frac{1}{f} \left(\frac{\tau_0}{\rho H} \right) + \frac{1}{f} \left(\frac{\tau_0}{\rho H} \right) \cos [f(t-T)] - u_T \sin [f(t-T)] + v_T \cos [f(t-T)]
\end{align*}
\]
for time $t > T$. Integrating gives the position in x and y:

\[
x = x_T + \frac{v_T}{f} + \frac{1}{f^2} \left(\frac{\tau_o}{\rho H} \right) - \frac{1}{f^2} \left(\frac{\tau_o}{\rho H} \right) \cos [f(t - T)] + \frac{u_T}{f} \sin [f(t - T)] - \frac{v_T}{f} \cos [f(t - T)] \]
\[
y = y_T - \frac{u_T}{f} + \frac{1}{f} \left(\frac{\tau_o}{\rho H} \right) (t - T) + \frac{1}{f^2} \left(\frac{\tau_o}{\rho H} \right) \sin [f(t - T)] + \frac{u_T}{f} \cos [f(t - T)] + v_T f \sin [f(t - T)]
\]

for time $t > T$.

2.b. The complex velocity for time $t > T$ can be written in the form

\[
s = -i \left(\frac{\tau_o}{\rho H} \right) \frac{1}{f} + \left[s_T + i \left(\frac{\tau_o}{\rho H} \right) \frac{1}{f} \right] e^{-i f(t - T)}
\]
\[
= -i \left(\frac{\tau_o}{\rho H} \right) \frac{1}{f} + \left(\frac{\tau_o}{\rho H} \right) \frac{1}{f f^2} \left[1 - \cos (fT) + i \sin (fT) \right] e^{-i f(t - T)}
\]

The first term on the right hand side shows that there is a constant component of the velocity in the $-iy$ direction, or 90 degrees to the right of the wind. The Ekman drift is $v_E = - \left(\frac{\tau_o}{\rho H} \right) \frac{1}{f}$. This drift is maintained by a balance between the wind forcing and the time averaged Coriolis force.

The oscillatory component of the velocity has a magnitude which depends on T, as seen in the first figure. The more slowly the wind forcing is applied, the more closely the Coriolis force balances the wind forcing at any time $0 \leq t \leq T$. If, when the wind forcing becomes constant, it is almost completely balanced by the Coriolis force, then the particle can only travel at a velocity close to v_E in a nearly straight line perpendicular to the two forces.

The trajectory of a particle starting at the origin is shown in the second figure for three different cases. The parameters are $f = 10^{-4} \text{ rad/s}$, $\rho = 1000 \text{ kg/m}^3$, $H = 100 \text{ m}$ and $\tau = 0.1 \text{ Pa}$.

7