Lecture 36 Anthropogenic Effects on Climate

It is well-documented that globally averaged land and sea-surface temperatures have increased 0.5 C in the last century. Is this the beginning of man-made global warming?

Two major anthropogenic ‘forcings’ on global climate have been identified.

1. Greenhouse gas concentrations are increasing
2. Aerosol concentrations are increasing
The greenhouse effect

- If the earth’s atmosphere were dry, we could predict fairly confidently that doubling pre-industrial CO₂ (likely by 2100) would increase mean surface temperature about 2 C.
- The famous 19th century Swedish chemist Arrhenius was the first to predict greenhouse warming.
Greenhouse gas concentrations are increasing

Hartmann, fig 8.6

- Currently, 7 gigatons/yr of CO₂ produced by burning of fossil fuel (80%) and deforestation 20%.
- Half accumulates in atmosphere, where it has a residence time of 50+ years.
- If we totally stopped burning fossil fuels/forests, it would take 50 years for CO₂ to return half way to preindustrial levels.
Other anthropogenic greenhouse gases

Climate Forcing by Greenhouse Gas Increases since the Industrial Revolution

- Carbon Dioxide: 1.56 W/m**2
- Methane: 0.47 W/m**2
- Nitrous Oxide: 0.14 W/m**2
- Halocarbons: 0.24 W/m**2

Courtesy of Dennis Hartmann, based on IPCC 1995.
Methane also increasing

IPCC 95
Aerosols

Minute hygroscopic (water-attracting) particles, usually 0.01-1 micron in diameter. Source is at surface, so most aerosol is in troposphere and is washed out in days-weeks by precipitation.

Natural:
- dust, salt, soot (fires), sulfate (ocean phytoplankton, volcanoes)

Manmade:
- sulfate (coal/oil combustion), soot & organics (industrial processes, wood burning, spraying)

Aerosols and Climate
- Aerosols reflect more sunlight back to space, cooling surface temperatures.
- Some aerosols (soot, smoke) absorb sunlight, warming the atmosphere (Kuwait oil fires).
• Sulfur-rich volcanic eruptions inject sulfate aerosol into the stratosphere (Pinatubo, 1991 - 20 million tons; Tambora, 1815 - hundred million tons), where it survives for years—global cooling of 0.5°C (Pinatubo) or more (Tambora) in next year.

• Sulfates, soot comprise the industrial haze that often blankets the eastern US, Europe in summer. Winds transport this haze over central Asia, oceans.

Fig. 12.5 Calculated increase of reflected solar flux caused by tropospheric sulfate aerosols derived from anthropogenic sources. Contour interval 1 W m⁻². [From Charlson et al. (1991). Reprinted with permission from Munksgaard International Publishers Ltd.] Hartmann
Indirect Effect of Aerosols

- Aerosols are the nuclei on which cloud droplets form
- More aerosol particles fill water in clouds is divided into more smaller droplets.
- Combined surface area of droplets is larger, increasing cloud reflectivity and cooling climate.
- Striking example - ‘ship tracks’.
• Estimates suggest 100+% anthropogenic increase in nucleii over source areas, 25% over remote NH oceans from wind transport of aerosols, and imply indirect effect is as big as direct effect.

• Overall effect of aerosol is to cancel 20-50% of the radiative impact of greenhouse gas. Large uncertainty about aerosol absorption, indirect effect.

• If man stopped producing aerosol, would take only a week or two to approach pre-industrial levels!
Projections of Greenhouse Emissions

- Without mitigation, greenhouse emissions rise...
- Even if emissions are stabilized at current levels, CO$_2$ reaches double pre-industrial values by 2100.
- Sulfate aerosol (which may be reining back global warming to date) is already starting to drop due to air pollution concerns.
• Rapidly increasing human greenhouse effect (one scenario shown)
Climate Feedbacks

The greenhouse effect is indisputable. Nevertheless, even if we perfectly knew future CO$_2$, there is some uncertainty about how much warming, and how fast, it will lead to due to natural climate feedbacks:

- Water vapor (positive)
- Clouds (unclear)
- Snow and ice cover (positive)
- Ocean circulation (delays)

Water vapor - likely a *positive* feedback
- Water vapor is a balance between surface evaporation (faster at low RH) and precipitation (requires high RH), maintaining an equilibrium pattern of RH.
- At higher temperatures, more water vapor is required to produce this RH pattern.

\[
\text{CO}_2 \uparrow \Rightarrow \text{temp.} \uparrow \Rightarrow \text{water vapor} \uparrow \Rightarrow \text{greenhouse} \uparrow
\]
Other feedbacks

- temp.↑ ⇒ snow and ice ↓ ⇒ albedo ↓ (+)
- Clouds are complex to model, feedback uncertain
- Oceans slower to warm, short-term heat sink.

Global climate models (GCMs) interactively coupled to computer models of ocean circulation simulate these climate feedbacks

- Weather forecast models with coarser grid spacing of 200-500 km ⇒ can simulate 100 or more years.
- Careful representations of relevant physical processes: clouds, radiation, surface characteristics, sea ice, etc.
- Tested on past/current climate, seasonal march, weather.
- In US, two main models are run at NCAR (Boulder, CO) and GFDL (Princeton).
- GCM predictions have uncertainties, and different plausible models produce slightly different results but are our best current guess at climate change in next 100 years.
Are climate models consistent with observed changes to date?

(a) Natural forcing only

(b) Anthropogenic forcing only

(c) Natural + Anthropogenic forcing

Krakatoa
Predictions of Climate Change in Next 100 Years

While many uncertainties, best current information suggests climate will warm alarmingly (2-5 C global average, larger toward poles) in next 100 years unless strong measures are taken to curb fossil fuel consumption/greenhouse gas emission. US (5% of world population) creates 25% of problem now.

IPCC 2001
Predicted warming is much larger in polar regions

Figure 13.16
Other global climate concerns

- CO₂-induced ocean acidification dissolves calcium-shelled marine organisms. Bleaching coral reefs due to warming of oceans.
- Large poleward migration of natural ecosystems (e.g. West Nile virus).
- Warming arctic bogs and frozen clathrates may become source of methane.
- CO₂ remains in the system for 1000+ years. Sea-level rise and glacial melt continue for many centuries, with sizeable chance of melting Greenland ice-cap over the next 1000+ years (which would add 20 ft of sea-level rise).
- Climate surprises yet to be appreciated.
Climate Change in the Northwest

(Scenario: 1% per year CO₂ increase 1990+)
Each 2 °C (3.5 °F) of warming causes snowline to rise by 300 m (1000 ft)...2500´ (2000) → 5500´ (2100).
Predicted snowpack reduction >50% by 2050.
So what are we to do...

- Precaution suggests that we try to stabilize climate before enormous changes occur; a giant ship is coming adrift.
- Internationally, greenhouse warming is recognized as a serious problem.
- Kyoto protocol would have been a start, but US govt. has not attempted to implement an energy policy aimed at major cuts in greenhouse emissions.
- We should support leaders and organizations at all levels of government and society who recognize the seriousness of climate change and the need for starting an organized transition away from fossil fuels now.